一.基础知识库 有毛发 哺乳动物 - 有奶 哺乳动物 - 有羽毛 鸟 - 会飞 会下蛋 鸟 - 吃肉 食肉动物 - 有犬齿 有爪 眼盯前方 食肉动物 - 哺乳动物 有蹄 有蹄类动物 - 哺乳动物 反刍动物 有蹄类动物 - 哺乳动物 食肉动物 黄褐色 身上有暗斑点 金钱豹 * 哺乳动物 食肉动物 黄褐色 身上有黑色条纹 虎 * 有蹄类动物 长脖子 有长腿 身上有暗斑点 长颈鹿 * 有蹄类动物 身上有黑色条纹 斑马 * 鸟 长脖子 有长腿 不会飞 有黑白二色 鸵鸟 * 鸟 会游泳 不会飞 有黑白二色…
第一篇 基本概念 01 什么是数据结构 02 什么是算法 03 应用实例-最大子列和问题 第二篇 线性结构 01 线性表及其实现 02 堆栈 03 队列 04 应用实例-多项式加法运算 05 小白专场-多项式乘法与加法运算-c语言实现 05 小白专场-多项式乘法与加法运算-python语言实现 第三篇 树(上) 01 树与树的表示 02 二叉树及存储结构 03 二叉树的遍历 04 小白专场-树的同构-c语言实现 04 小白专场-树的同构-python语言实现 第三篇 树(中) 01 二叉搜索树…
之前我分享过一个数据结构与算法的课程,很多小伙伴私信我问有没有Python版. 看了一些公开课后,今天特向大家推荐北京大学的这门课程:<数据结构与算法Python版>. 课程概述 很多同学想要转行机器学习,也确实掌握了一些机器学习模型原理并具备基础的编程功底,但是在笔试.面试的时候还会掉链子,大概率是数据结构和算法知识薄弱.数据结构和算法是程序员的内功心法和基本功.无论是人工智能还是其它计算机科学领域,掌握扎实的数据结构和算法知识,往往会助力不少! 北京大学公开课<数据结构与算法Pyth…
Atitit 图像清晰度 模糊度 检测 识别 评价算法 源码实现attilax总结 1.1. 原理,主要使用像素模糊后的差别会变小1 1.2. 具体流程1 1.3. 提升性能 可以使用采样法即可..1 1.4. 实现代码1 1.1. 原理,主要使用像素模糊后的差别会变小 通过计算横向前后俩点像素的差异..然后累加即可.. 1.2. 具体流程 图片灰度化,这样可以只保留hsv分量了...然后读取v分量,就是明亮度了.. Hs色相和饱和度全部去除了..   比较v分量的差异即可.. 1.3. 提升性…
Atitit 图像清晰度 模糊度 检测 识别 评价算法 原理 1.1. 图像边缘一般都是通过对图像进行梯度运算来实现的1 1.2. Remark: 1 1.3.  1.失焦检测. 衡量画面模糊的主要方法就是梯度的统计特征,通常梯度值越高,画面的边缘信息越丰富,图像越清晰.1 1.4. 利用边缘检测 ,模糊图片边缘会较少2 1.5. 通过dct比较.Dct分离出的低频信号比较2 1.6. 参考资料2 1.1. 图像边缘一般都是通过对图像进行梯度运算来实现的 1.2. Remark:   1)肉眼可…
一.什么是pagerank PageRank的Page可是认为是网页,表示网页排名,也可以认为是Larry Page(google 产品经理),因为他是这个算法的发明者之一,还是google CEO(^_^).PageRank算法计算每一个网页的PageRank值,然后根据这个值的大小对网页的重要性进行排序.它的思想是模拟一个悠闲的上网者,上网者首先随机选择一个网页打开,然后在这个网页上呆了几分钟后,跳转到该网页所指向的链接,这样无所事事.漫无目的地在网页上跳来跳去,PageRank就是估计这个…
常见排序算法-Python实现 python 排序 算法 1.二分法     python    32行 right = length-  :  ]   ):  test_list = [,,,,,,]  test_val1 =   test_val2 =   ):  length = len(array)  :  :  ):  ]:  array[i],array[i+] = array[i+],array[i]  length -=   :  :  ):  ]:  array[i],arra…
同行业中,别人标配有的产品我有,别人没有的产品我们也有,如此才能增强竞争力,通过优化创新,前端车牌识别SDK功能,性能上,都是行业NO.1的水平.车牌识别sdk这个用于越来越多人集成了,汽车保有量日益上升,越来越多公司开发车辆管理系统,在系统开发过程中,对于OCR识别算法,不少开发人员为了节省成本,在开源中寻找车牌识别算法,耗费了不少人力物力以及时间成本.易泊时代车牌识别算法经历了十几春秋,商用来说,再没难度. 一个好的算法并非一朝一夕,经得住风霜,耐得住寂寞,手机前端车牌识别SDK扫描识别,速…
kmp算法python实现 kmp算法 kmp算法用于字符串的模式匹配,也就是找到模式字符串在目标字符串的第一次出现的位置比如abababc那么bab在其位置1处,bc在其位置5处我们首先想到的最简单的办法就是蛮力的一个字符一个字符的匹配,但那样的时间复杂度会是O(m*n)kmp算法保证了时间复杂度为O(m+n) 基本原理 举个例子:发现x与c不同后,进行移动a与x不同,再次移动此时比较到了c与y, 于是下一步移动成了下面这样这一次的移动与前两次的移动不同,之前每次比较到上面长字符串的字符位置后…
人工智能时代,应立即学习python 应用:web开发,自动化运维开发,自动化测试,数据分析,机器学习 1.python 快速易学习2.python 基于web开发(zhihu:tornad web框架,  jdanggo 大型python网络web框架,flask小型python网络web框架,bottle,web框架)3.python 驱动创业公司成功,快速编码,比java少5倍代码4.想要高薪,成为python程序员吧5.在网络安全领域,python可以做任何事,效力高6.python是A…
搭建python+PyQt+Eric平台 预备安装程序: 2.1.下载Python3.2 官方网站:http://www.python.org/ 下载地址:http://www.python.org/ftp/python/3.2.2/python-3.2.2.msi 2.2.下载PyQt4 官方网站:http://www.riverbankcomputing.co.uk 下载地址:下载Windows 32 bit installer www.riverbankcomputing.co.uk/st…
首发于:python人工智能爬虫系列:怎么查看python版本_电脑计算机编程入门教程自学 http://jianma123.com/viewthread.aardio?threadid=431 本文由简码编程原创,保留所有版权,转载请注明出处. 本python人工智能爬虫系列教程基于Python3.0版本, 将python结合windows桌面开发工具aardio一起做可视化的开发, 用python做逻辑处理,用aardio做窗口界面, 不用再看着黑黑的python命令行窗口, 有window…
                           KMP算法-Python版 传统法: 从左到右一个个匹配,如果这个过程中有某个字符不匹配,就跳回去,将模式串向右移动一位.这有什么难的? 我们可以这样初始化: 之后我们只需要比较i指针指向的字符和j指针指向的字符是否一致.如果一致就都向后移动,如果不一致,如下图: A和E不相等,那就把i指针移回第1位(假设下标从0开始),j移动到模式串的第0位,然后又重新开始这个步骤: 因为主串匹配失败的位置前面除了第一个A之外再也没有A了,我们为什么能知道…
Python 号称是最接近人工智能的语言,因为它的动态便捷性和灵活的三方扩展,成就了它在人工智能领域的丰碑 走进Python,靠近人工智能 一.编程语言Python的基础 之 "浅入浅出"不是不给你讲,而是重点在人工智能应用 1.变量 声明变量: 1 name = "DragonFire" # 声明一个变量name 用来存储一个字符串"DragonFire" 2 age = 20 # 声明一个变量age 用来存储一个数字 20 3 4 print…
压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构算法之OLS算法python实现 压缩感知重构算法之IRLS算法python实现 IRLS(iteratively reweighted least squares)算法 (本文给出的代码未进行优化,只是为了说明算法流程 ,所以运行速度不是很快) IRLS(iteratively reweighte…
压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构算法之OLS算法python实现 压缩感知重构算法之IRLS算法python实现 Orthogonal Least Squares (OLS)算法流程 实验 要利用python实现,电脑必须安装以下程序 python (本文用的python版本为3.5.1) numpy python包(本文用的版本…
压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构算法之OLS算法python实现 压缩感知重构算法之IRLS算法python实现 算法流程 算法分析 python代码 要利用python实现,电脑必须安装以下程序 python (本文用的python版本为3.5.1) numpy python包(本文用的版本为1.10.4) scipy pyth…
压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构算法之OLS算法python实现 压缩感知重构算法之IRLS算法python实现 IHT(iterative hard thresholding )算法是压缩感知中一种非常重要的贪婪算法,它具有算法简单的有点,且易于实现,在实际中应用较多.本文给出了IHT算法的python和matlab代码(本文给…
压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构算法之OLS算法python实现 压缩感知重构算法之IRLS算法python实现 SP(subspace pursuit)算法是压缩感知中一种非常重要的贪婪算法,它有较快的计算速度和较好的重构概率,在实际中应用较多.本文给出了SP算法的python和matlab代码,以及完整的仿真过程. 参考文献:…
压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构算法之OLS算法python实现 压缩感知重构算法之IRLS算法python实现 本文主要简单介绍了利用python代码实现压缩感知的过程. 压缩感知简介 [具体可以参考这篇文章] 假设一维信号x长度为N,稀疏度为K.Φ 为大小M×N矩阵(M<<N).y=Φ×x为长度M的一维测量值.压缩感知问题就…
数据挖掘入门系列教程(五)之Apriori算法Python实现 加载数据集 获得训练集 频繁项的生成 生成规则 获得support 获得confidence 获得Lift 进行验证 总结 参考 数据挖掘入门系列教程(五)之Apriori算法Python实现 在上一篇博客中,我们介绍了Apriori算法的算法流程,在这一片博客中,主要介绍使用Python实现Apriori算法.数据集来自grouplens中的电影数据,同样我的GitHub上面也有这个数据集. 推荐下载这个数据集,1MB大小够了,因…
1.最优化与线性规划 最优化问题的三要素是决策变量.目标函数和约束条件. 线性规划(Linear programming),是研究线性约束条件下线性目标函数的极值问题的优化方法,常用于解决利用现有的资源得到最优决策的问题. 简单的线性规划问题可以用 Lingo软件求解,Matlab.Python 中也有求解线性规划问题的库函数或求解器,很容易学习和使用,并不需要用模拟退火算法.但是,由一般线性规划问题所衍生的整数规划.混合规划.0/1规划.二次规划.非线性规划.组合优化问题,则并不是调用某个库函…
1.整数规划问题 整数规划问题在工业.经济.国防.医疗等各行各业应用十分广泛,是指规划中的变量(全部或部分)限制为整数,属于离散优化问题(Discrete Optimization). 线性规划问题的最优解可能是分数或小数.但很多实际问题常常要求某些变量必须是整数解,例如:机器的台数.工作的人数或装货的车数.根据对决策变量的不同要求,整数规划又可以分为:纯整数规划.混合整数规划.0-1整数规划.混合0-1规划. 整数规划与线性规划的差别只在于增加了整数约束.初看起来似乎只要把线性规划得到的非整数…
学习来源 北京大学-数据结构与算法Python版 目标 了解计算机科学.程序设计和问题解决的基本概念 计算机科学是对问题本身.问题的解决.以及问题求解过程中得出的解决方案的研究.面对一 个特定问题,计算机科学家的目标是得出一个算法(algorithm) ,写出一组解决该问题可能出现的任何情况的步步为营的指令.算法通过有限过程解决问题.算法是解决方案. 计算机科学可以被看作是对算法的研究. 可计算 抽象 理解什么是"抽象"以及抽象在问题解决过程中的作用 定义 抽象使我们能以一种区分所谓的…
kNN算法 算法优缺点: 优点:精度高.对异常值不敏感.无输入数据假定 缺点:时间复杂度和空间复杂度都很高 适用数据范围:数值型和标称型 算法的思路: KNN算法(全称K最近邻算法),算法的思想很简单,简单的说就是物以类聚,也就是说我们从一堆已知的训练集中找出k个与目标最靠近的,然后看他们中最多的分类是哪个,就以这个为依据分类. 函数解析: 库函数 tile() 如tile(A,n)就是将A重复n次 a = np.array([0, 1, 2]) np.tile(a, 2) array([0,…
在上一篇博文中,我们对KNN算法思想及流程有了初步的了解,KNN是采用测量不同特征值之间的距离方法进行分类,也就是说对于每个样本数据,需要和训练集中的所有数据进行欧氏距离计算.这里简述KNN算法的特点: 优点:精度高,对异常值不敏感,无数据输入假定 缺点:计算复杂度高,空间复杂度高 适用数据范围:数值型和标称型(具有有穷多个不同值,值之间无序)    knn算法代码: #-*- coding: utf-8 -*- from numpy import * import operatorimport…
起因 自打用python+django写了一个点菜系统,就一直沉迷python编程.正好前几天公司boss要我研究一下人脸识别,于是我先用python编写了一个人脸识别系统的核心,用于之后的整个系统. 需要导入的包 h5py==2.8.0 Keras==2.2.4 mock==2.0.0 numpy==1.15.3 pbr==5.1.0 protobuf==3.6.1 PyYAML==3.13 scikit-learn==0.20.0 scipy==1.1.0 six==1.11.0 sklea…
处理器图像: 处理后图像: 代码: from PIL import Image image = Image.open('4.jpg') image = image.convert('L') image.show() import numpy as np image = np.asarray(image) image = (image > 135) * 255 image = Image.fromarray(image).convert('RGB') image.show() image.save…
内容主要来源于机器学习实战这本书.加上自己的理解. 1.KNN算法的简单描写叙述 K近期邻(k-Nearest Neighbor.KNN)分类算法能够说是最简单的机器学习算法了. 它採用測量不同特征值之间的距离方法进行分类. 它的思想非常easy:假设一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别.则该样本也属于这个类别. 下图是大家引用的一个最经典演示样例图. 比方上面这个图,我们有两类数据,各自是蓝色方块和红色三角形,他们分布在一个上图的二维中间中. 那…
首先用Python实现简单地神经网络算法: import numpy as np # 定义tanh函数 def tanh(x): return np.tanh(x) # tanh函数的导数 def tan_deriv(x): return 1.0 - np.tanh(x) * np.tan(x) # sigmoid函数 def logistic(x): return 1 / (1 + np.exp(-x)) # sigmoid函数的导数 def logistic_derivative(x): r…