[HAOI2018]苹果树题解】的更多相关文章

题目链接 大意:不解释 思路: 首先方案数共有n!种,第1个点只有1种选择,第2个点2种选择,生成2个选择的同时消耗一个,第3个点则有3种选择,依次类推共有n!种方案,由于最后答案*n!,故输出的实际上是每种方案的总和. 由于枚举方案是不可行的,考虑枚举边,计算每一个点连向父亲的边的贡献,容易知道贡献为siz*(n-siz),siz为子树大小.所以枚举点与siz即可.再考虑组成子树的形态,与子树外的形态.设当前枚举到i号点,子树大小为siz,则子树内不考虑编号有siz!种形态,考虑编号则有C(n…
[BZOJ5305][HAOI2018]苹果树(组合计数) 题面 BZOJ 洛谷 题解 考虑对于每条边计算贡献.每条边的贡献是\(size*(n-size)\). 对于某个点\(u\),如果它有一棵大小为\(K\)的子树的话,考虑方案数. 首先要从剩下的\(n-u\)个点中选出\(K\)个点作为这棵子树,那么选择方案数是\({n-u\choose K}\),构树的方案数是\(K!\).除了这些点外,还剩下\(n-u-K\)个点,他们随意的方案数我们这样考虑,首先把选出来的\(K\)个点拿出来,余…
洛谷题目链接:[HAOI2018]苹果树 题目背景 HAOI2018 Round2 第一题 题目描述 小 C 在自己家的花园里种了一棵苹果树, 树上每个结点都有恰好两个分支. 经过细心的观察, 小 C 发现每一天这棵树都会生长出一个新的结点. 第一天的时候, 果树会长出一个根结点, 以后每一天, 果树会随机选择一个当前树中没有长出过结点 的分支, 然后在这个分支上长出一个新结点, 新结点与分支所属的结点之间连接上一条边. 小 C 定义一棵果树的不便度为树上两两结点之间的距离之和, 两个结点之间…
[HAOI2018]苹果树 cx巨巨给我的大火题. 感觉这题和上次考试gcz讲的那道有标号树的形态(不记顺序)计数问题很类似. 考虑如果对每个点对它算有贡献的其他点很麻烦,不知怎么下手.这个时候就想到换一种思路,算每一条边有多少对点经过,很自然的想到状态\(dp[i][j]\)表示树标号到i,i子树的节点sz大小为j.这题是有标号的,先考虑无标号,那么i子树的形态一共有\(j!\)种. i之上的树的形态(有先后顺序区别)有多少怎么算呢?已经到i了,说明前i个节点的形态已经确定,有\(i!\)种形…
考虑生成一颗二叉树的过程,加入第一个节点方案数为\(1\),加入第二个节点方案数为\(2\),加入第三个节点方案数为\(3\),发现生成一颗\(n\)个节点的二叉树的方案数为\(n!\). 所以题目中所求即为点与点之间的距离之和,考虑每一条边的贡献,即\(\sum\limits_esize_x \times size_y\),\(x\)和\(y\)为这条边的两个端点. 可以枚举每一个节点\(i\),再枚举节点\(i\)子树大小\(j\),其和父亲的连边对答案的贡献为\(j(n-j)\),然后贡献…
这套题是 dy, wearry 出的.学长好强啊,可惜都 \(wc\) 退役了.. 话说 wearry 真的是一个计数神仙..就没看到他计不出来的题...每次考他模拟赛总有一两道毒瘤计数TAT 上午的官方题解可以看 dy0607 的博客,写的挺详细的. 「HAOI2018」奇怪的背包 题意 小C非常擅长背包问题,他有一个奇怪的背包,这个背包有一个参数 \(P\) ,当他向这个背包内放入若干个物品后,背包的重量是物品总体积对 \(P\) 取模后的结果. 现在小C有 \(n\) 种体积不同的物品,第…
链接 小 C 在自己家的花园里种了一棵苹果树, 树上每个结点都有恰好两个分支. 经过细心的观察, 小 C 发现每一天这棵树都会生长出一个新的结点. 第一天的时候, 果树会长出一个根结点, 以后每一天, 果树会随机选择一个当前树中没有长出过结点 的分支, 然后在这个分支上长出一个新结点, 新结点与分支所属的结点之间连接上一条边. 小 C 定义一棵果树的不便度为树上两两结点之间的距离之和, 两个结点之间 的距离定义为从一个点走到另一个点的路径经过的边数. 现在他非常好奇, 如果 \(N\) 天之后小…
题解 首先所有生成树的情况树是\(n!\)的,因为第一次有1中方法,第二次有两种放法,以此类推... 然后我们发现距离这种东西可以直接枚举每条边算贡献. 于是我们枚举了一个点\(i\),又枚举了这个点的子树大小\(size\),那么这部分的距离也就可以直接算出来了. \[ (n-size)*size \] 接下来我们还要去算有多少种方案. 对于子树内部,标号和排列方法都没有确定,所以方案数就是: \[ \binom{n-i}{size}*size! \] 然后考虑子树外的情况,首先子树外的点不可…
嘟嘟嘟 这种计数大题就留给南方的计数神仙们做吧-- 刚开始我一直想枚举点,考虑新加一个点在根节点的左右子树,以及左右子树大小怎么分配,但是这样太难计算新的点带来的贡献了. 后来lba又提示我枚举边,考虑每一条边的贡献. 这确实是一个好主意,枚举边的同时考虑边两侧的点数,但可怕的是我一直把他当成无根树来做,也就是忽略了树上打父子关系,导致少算了好多形态. 于是题解吵朝我挥了挥手. 既然是有根树,那么我们枚举每一个点,然后枚举的是这个点和他父亲的连边,这样就能不重不漏并且有顺序的枚举所有边了. 考虑…
题目链接 BZOJ5305 题解 妙啊 要求的是所有可能的树形的所有点对距离和 直接考虑点的贡献肯定想不出,这样的所有点对距离问题通常转化为边的贡献 考虑一条边会产生多少贡献 我们枚举\(i\)节点的父亲边 首先我们认识到一点,按照题中所给的生成树的方式,\(n\)个节点的树有\(n!\)种形态 我们枚举了边,贡献为边两侧点数之积,所以再枚举一下\(i\)子树大小\(siz\) 那么贡献为 \[siz(n - siz)\] \(i\)子树的方案数为 \[{n - i \choose siz -…