将Tensorflow模型部署成Restful接口 下面是实现过程,整个操作都是在Linux上面实现的,因为Tensorflow Serving 目前还只支持Linux 这个意义真的是革命性的,因为从此以后大家就可以将训练好的模型真正的 通过Restful接口与其他所有的ERP 或者 CRM系统进行集成啦 上面这个图片是 Server加载模型,并且成功运行 上面这张图片是调用Call Restful 接口的Python 程序来调用Server上面的模型进行批量识别, 由结果可见预测的错误率是 1…
昨晚终于实现了Tensorflow模型的部署 使用TensorFlow Serving 1.使用Docker 获取Tensorflow Serving的镜像,Docker在国内的需要将镜像的Repository地址设置为阿里云的加速地址,这个大家可以自己去CSDN上面找 然后启动docker 2.使用Tensorflow 的 SaveModelBuilder保存Tensorflow的计算图模型,并且设置Signature, Signature主要用来标识模型的输入值的名称和类型 builder…
Using TensorFlow Serving with Docker 1.Ubuntu16.04下安装docker ce 1-1:卸载旧版本的docker sudo apt-get remove docker docker-engine docker.io 1-2:安装可选内核模块从 Ubuntu 14.04 开始,一部分内核模块移到了可选内核模块包 ( linux-image-extra-* ) ,以减少内核软件包的体积.正常安装的系统应该会包含可选内核模块包,而一些裁剪后的       …
TensorFlow 模型保存与加载 TensorFlow中总共有两种保存和加载模型的方法.第一种是利用 tf.train.Saver() 来保存,第二种就是利用 SavedModel 来保存模型,接下来以自己项目中的代码为例. 项目中模型的代码: class TensorFlowDKT(object): def __init__(self, config, batch_size): # 导入配置好的参数 self.hiddens = hiddens = config.modelConfig.h…
一.前言 随着深度学习在图像.语言.广告点击率预估等各个领域不断发展,很多团队开始探索深度学习技术在业务层面的实践与应用.而在广告CTR预估方面,新模型也是层出不穷: Wide and Deep[1].DeepCross Network[2].DeepFM[3].xDeepFM[4],美团很多篇深度学习博客也做了详细的介绍.但是,当离线模型需要上线时,就会遇见各种新的问题: 离线模型性能能否满足线上要求.模型预估如何镶入到原有工程系统等等.只有准确的理解深度学习框架,才能更好地将深度学习部署到线…
http://blog.csdn.net/wangjian1204/article/details/68928656 本文转载自:https://zhuanlan.zhihu.com/p/23361413 ,原题:TensorFlow Serving 尝尝鲜 2016年,机器学习在 Alpha Go 与李世石的世纪之战后变得更加炙手可热.Google也在今年推出了 TensorFlow Serving 又加了一把火. TensorFlow Serving 是一个用于机器学习模型 serving…
前提:要实现多模型部署,首先要了解并且熟练实现单模型部署,可以借助官网文档,使用Docker实现部署. 1. 首先准备两个你需要部署的模型,统一的放在multiModel/文件夹下(文件夹名字可以任意取),其目录结构如下: multiModel/├── model1 │ └── 00000123 │ ├── saved_model.pb │ └── variables │ ├── variables.data-00000-of-00001 │ └── variables.index ├── mo…
拉去tensorflow srving 镜像 docker pull tensorflow/serving:1.12.0 代码里新增tensorflow 配置代码 # 要指出输入,输出张量 #指定保存路径 # serving_save signature = tf.saved_model.signature_def_utils.predict_signature_def( inputs={'input_param': model.inputs_placeholder}, outputs={'ty…
TensorFlow Serving 是一个用于机器学习模型 serving 的高性能开源库.它可以将训练好的机器学习模型部署到线上,使用 gRPC 作为接口接受外部调用.更加让人眼前一亮的是,它支持模型热更新与自动模型版本管理.这意味着一旦部署 TensorFlow Serving 后,你再也不需要为线上服务操心,只需要关心你的线下模型训练. TensorFlow Serving的典型的流程如下:学习者(Learner,比如TensorFlow)根据输入数据进行模型训练.等模型训练完成.验证之…
[摘要] Tensorflow Serving 是tf模型持久化的重要工具,本篇介绍如何通过Docker compose搭建并调试TensorFlow Serving TensorFlow Serving GitHub地址: https://github.com/tensorflow/serving 建立docker-compose 文件目录 在serving下建立docker-compose.yml文件. 一.下载安装测试TensorFlow Serving正常运行 拉取最近版本的docker…