以[BZOJ2687]交与并为例给出代码. #include <bits/stdc++.h> #define rin(i,a,b) for(register int i=(a);i<=(b);++i) #define irin(i,a,b) for(register int i=(a);i>=(b);--i) #define trav(i,a) for(register int i=head[a];i;i=e[i].nxt) #define Size(a) (int)a.size(…
传送门 决策单调性优化dp板子题. 感觉队列的写法比栈好写. 所谓决策单调性优化就是每次状态转移的决策都是在向前单调递增的. 所以我们用一个记录三元组(l,r,id)(l,r,id)(l,r,id)的队列来维护,表示在(l,r)(l,r)(l,r)这个区间当前的决策都是ididid,然后在每次求决策点的时候弹一下队头,求出当前解之后我们更新一下队尾就行了. 代码: #include<bits/stdc++.h> #define N 100005 #define ld long double u…
遇见的第一道决策单调性优化DP,虽然看了题解,但是新技能√,很开森. 先%FlashHu大佬,反正我是看了他的题解和精美的配图才明白的,%%%巨佬. 废话不多说,看题: 题目大意 已知一个长度为n的序列a1,a2,...,an. 对于每个1<=i<=n,找到最小的非负整数p满足 对于任意的j, aj < = ai + p - sqrt(abs(i-j)) 数据范围 洛咕上也没给,我能怎么办啊 非正解做法一:暴力 应该都会吧,\(O(n^2)\)枚举.洛谷上貌似40pts. 非正解做法二:…
Description 已知一个长度为n的序列a1,a2,...,an. 对于每个1<=i<=n,找到最小的非负整数p满足 对于任意的j, aj < = ai + p - sqrt(abs(i-j)) Input 第一行n,(1<=n<=500000) 下面每行一个整数,其中第i行是ai.(0<=ai<=1000000000) Output n行,第i行表示对于i,得到的p Sample Input 6 5 3 2 4 2 4 Sample Output 2 3…
决策单调性优化dp 专题练习 优化方法总结 一.斜率优化 对于形如 \(dp[i]=dp[j]+(i-j)*(i-j)\)类型的转移方程,维护一个上凸包或者下凸包,找到切点快速求解 技法: 1.单调队列 : 在保证插入和查询的x坐标均具有单调性时可以使用 2.单调栈+二分:保证插入有单调性,不保证查询有单调性 3.分治+ 1 或 2:在每次分治时将\([l,mid]\)这段区间排序后插入,然后更新右区间\([mid+1,r]\)的答案 二.分治.单调队列维护有单调性的转移 (甚至还有分治套分治)…
update in 2019.1.21 优化了一下文中年代久远的代码 的格式…… 什么是决策单调性? 在满足决策单调性的情况下,通常决策点会形如1111112222224444445555588888..... 即不可能会出现后面点的决策点小于前面点的决策点这种情况. 那么这个性质应该如何使用呢? 1,二分. 考虑到决策点单调递增,因此我们考虑用单调队列存下当前的决策选取情况. 单调队列中存的量会带3个信息:这是哪个决策点,这个决策点会给哪个区间的点产生贡献(这是一个区间,所以算2个信息) 相当…
题意: 给定一个序列,你要将其分为k段,总的代价为每段的权值之和,求最小代价. 定义一段序列的权值为$\sum_{i = 1}^{n}{\binom{cnt_{i}}{2}}$,其中$cnt_{i}$表示当前这段序列中数字大小为i的数的个数. 题解: 先考虑暴力DP, f[i][j]表示DP到i位,分为j段的最小代价. 则$f[i][j] = min(f[l - 1][j] + sum[l][i])$,其中sum[l][i]表示区间[l, i]分成一段的代价. 然后可以发现,这是具有决策单调性的…
第一种方法是决策单调性优化DP. 决策单调性是指,设i>j,若在某个位置x(x>i)上,决策i比决策j优,那么在x以后的位置上i都一定比j优. 根号函数是一个典型的具有决策单调性的函数,由于根号函数斜率递减,所以i决策的贡献的增长速度必定比j快. 于是使用基础的决策单调性优化即可. 注意两个问题,一是DP函数要存实数而不能存整数,因为先取整会丢失在后面的判断中需要的信息.二是记录决策作用区间的时候左端点要实时更新,即下面的p[st].l++,否则在二分时会出现错误. #include<c…
题目: 给n个数字,一段合法区间[l,l+m-1]要求max-min<=c 输出所有合法区间的左端点,如果没有输出NONE 题解: 单调队列同时维护最大值和最小值 #include<cstdio> #include<algorithm> #include<cstring> #define N 1000005 using namespace std; int n,m,c,Q[N],q[N],a[N],Ql,Qr,ql,qr,OK; int main() { scan…
http://poj.org/problem?id=2018 此乃神题……详见04年集训队论文周源的,看了这个对斜率优化dp的理解也会好些. 分析: 我们要求的是{S[j]-s[i-1]}/{j-(i-1)}最大,可以发现这个形式满足直线斜率式,于是原题就可以看成平面上有一些点P(i,s[i]),然后求这些点中横距大于F的两点的最大斜率. 这么转化后仍然需要n^2的枚举 但当你枚举一个点,并在前面的点中枚举找到一个和它结合斜率最大的解时,可以发现是像凸包那样的维护一个下凹的曲线,因为如果某个点是…