洛谷1439:最长公共子序列(nlogn做法) 题目描述: 给定两个序列求最长公共子序列. 这两个序列一定是\(1\)~\(n\)的全排列. 数据范围: \(1\leq n\leq 10^5\) 思路: \(n^2\)很好做,不赘述. 这里有个很好的一点就是两个序列都一定是全排列,说明两个序列的元素出现的位置不一样而已,但是数字是一样的. 通过\(vis\)来记录\(A\)序列的数字出现的位置,自然也可以对应到\(B\)的位置. 接下来的步骤看样例解释一下吧. 比如说\(A\)串:\(3\ 2\…
洛谷题目传送门 一进来就看到一个多月前秒了此题的ysn和YCB%%% 最长公共子序列的\(O(n^2)\)的求解,Dalao们想必都很熟悉了吧!不过蒟蒻突然发现,用网格图貌似可以很轻松地理解这个东东? 设字符串长度为\(n,m\),那么想象我们有一个\(n+1\)行\(m+1\)列的网格图,只能从左下角往右.上两个方向走.定义每条路径的长度都为\(1\).记第\(i\)行第\(j\)列为\((i,j)\). 话说网格图真tm难画 求最长公共子序列本质上是在两个序列中寻找最多的配对,而且这些配对的…
题目传送门 解题思路: 第一问要求最长公共子序列,直接套模板就好了. 第二问要求数量,ans[i][j]表示第一个字符串前i个字符,第二个字符串前j个字符的最长公共子序列的数量 如果f[i][j]是由f[i-1][j]转移过来的,那么ans[i][j] += ans[i-1][j]. 如果是从f[i][j-1]或f[i-1][j-1]转移过来的,同上(数组下标变化). 如果f[i][j] == f[i-1][j-1],那么说明f[i-1][j]和f[i][j-1]是从f[i-1][ij-1]转移…
题目描述 字符序列的子序列是指从给定字符序列中随意地(不一定连续)去掉若干个字符(可能一个也不去掉)后所形成的字符序列.令给定的字符序列X="x0,x1,-,xm-1",序列Y="y0,y1,-,yk-1"是X的子序列,存在X的一个严格递增下标序列 #include<iostream> #include<cstdio> #include<cstring> #include<cmath> #include<cstd…
\[传送门啦\] 题目描述 给出\(1-n\)的两个排列\(P1\)和\(P2\),求它们的最长公共子序列. 输入输出格式 输入格式: 第一行是一个数\(n\), 接下来两行,每行为\(n\)个数,为自然数\(1-n\)的一个排列. 输出格式: 一个数,即最长公共子序列的长度 输入输出样例 输入样例#1: 5 3 2 1 4 5 1 2 3 4 5 输出样例#1: 3 说明 [数据规模] 对于\(50%\)的数据,\(n≤1000\) 对于\(100%\)的数据,\(n≤100000\) 思路…
To 洛谷.3373 [模板]线段树2 题目描述 如题,已知一个数列,你需要进行下面两种操作: 1.将某区间每一个数加上x 2.将某区间每一个数乘上x 3.求出某区间每一个数的和 输入输出格式 输入格式: 第一行包含三个整数N.M.P,分别表示该数列数字的个数.操作的总个数和模数. 第二行包含N个用空格分隔的整数,其中第i个数字表示数列第i项的初始值. 接下来M行每行包含3或4个整数,表示一个操作,具体如下: 操作1: 格式:1 x y k 含义:将区间[x,y]内每个数乘上k 操作2: 格式:…
Sample Input 5 1 4 2 5 -12 4 -12 1 2 4 Sample Output 2 1 4 题目:给你两个数字序列,求出这两个序列的最长公共上升子序列.输出最长的长度,并打表输出.可能存在多种正确答案,故此题是special judge! 分析:dp[i][j] : A[1...i]和B[1...j]的公共上升子序列中以B[j]为结尾的最长的长度.如果A[i] != B[j], 则dp[i][j]=d[i-1][j]; 也就是说当前这个A[i]是没效用的.如果A[i]…
题目描述 Description 熊大妈的奶牛在小沐沐的熏陶下开始研究信息题目.小沐沐先让奶牛研究了最长上升子序列,再让他们研究了最长公共子序列,现在又让他们要研究最长公共上升子序列了.小沐沐说,对于两个串A,B,如果它们都包含一段位置不一定连续的数字,且数字是严格递增的,那么称这一段数字是两个串的公共上升子串,而所有的公共上升子串中最长的就是最长公共上升子串了.奶牛半懂不懂,小沐沐要你来告诉奶牛什么是最长公共上升子串.不过,只要告诉奶牛它的长度就可以了. 输入描述 Input Descript…
BEGIN LIS: 一个数的序列bi,当b1 < b2 < … < bS的时候,我们称这个序列是上升的.对于给定的一个序列(a1, a2, …, aN),我们可以得到一些上升的子序列(ai1, ai2, …, aiK),这里1 <= i1 < i2 < … < iK <= N.比如,对于序列(1, 7, 3, 5, 9, 4, 8),有它的一些上升子序列,如(1, 7), (3, 4, 8)等等.这些子序列中最长的长度是4,比如子序列(1, 3, 5, 8…
题目描述 This problem differs from one which was on the online contest. The sequence a1,a2,...,an a_{1},a_{2},...,a_{n} a1​,a2​,...,an​ is called increasing, if ai<ai+1 a_{i}<a_{i+1} ai​<ai+1​ for i<n i<n i<n . The sequence s1,s2,...,sk s_{1…