模板 FFT 快速傅里叶变换】的更多相关文章

FFT模板,原理不难,优质讲解很多,但证明很难看太不懂 这模板题在bzoj竟然是土豪题,服了 #include <cmath> #include <cstdio> #include <cstring> #include <algorithm> #define dd double #define ll long long #define N (1<<21)+10 using namespace std; int n,m,ma; int r[N];…
目录 「学习笔记」FFT 快速傅里叶变换 啥是 FFT 呀?它可以干什么? 必备芝士 点值表示 复数 傅立叶正变换 傅里叶逆变换 FFT 的代码实现 还会有的 NTT 和三模数 NTT... 「学习笔记」FFT 快速傅里叶变换 几个星期之后,继 扩展欧拉定理 之后, \(lj\) 大佬又给我们来了一发数论... 虽然听得心态爆炸, 但是还好的是没有 \(ymx\) 大佬的飞机开得好... 至少我还没有坐飞机... 啥是 FFT 呀?它可以干什么? 首先,你需要知道 矩阵乘法 的相关知识. 通过…
FFT 快速傅里叶变换 前言 lmc,ikka,attack等众多大佬都没教会的我终于要自己填坑了. 又是机房里最后一个学fft的人 早背过圆周率50位填坑了 用处 多项式乘法 卷积 \(g(x)=a_0+a_1x+a_2x^2\) \(f(x)=b_0+b_1x+b_2x^2\) 他们的乘积c(x)就是 \(c(x)=a_0b_0+a_0b_1x+a_0b_2x^2+a_1b_0x+a_1b_1x^2+a_1b_2x^3+a_2b_0x^2+a_2b_1x^3+a_2b_2x^4\) c(x)…
题面: CQOI2018九连环 分析: 个人认为这道题没有什么价值,纯粹是为了考算法而考算法. 对于小数据我们可以直接爆搜打表,打表出来我们可以观察规律. f[1~10]: 1 2 5 10 21 42 85 170 341 682 我们可以发现的规律是,当i为奇数时,f[i]=f[i-1]*2+1,偶数时f[i]=f[i-1]*2. 既然这样,我们可以推断通项公式是否跟2的次幂有关. 我们连蒙带猜连导带推,可以得出,f[i]=2^(i+1)/3(下取整). 再结合数据范围,我们可以决定是写ff…
先看看. 通常模数常见的有998244353,1004535809,469762049,这几个的原根都是3.所求的项数还不能超过2的23次方(因为998244353的分解). 感觉没啥用. #include <cstdio> #include <cstring> template <class T> inline void swap(T &a, T &b) { T c; c = a; a = b; b = c; } ; , G = ; inline in…
问题: 已知A[], B[], 求C[],使: 定义C是A,B的卷积,例如多项式乘法等. 朴素做法是按照定义枚举i和j,但这样时间复杂度是O(n2). 能不能使时间复杂度降下来呢? 点值表示法: 我们把A,B,C看作表达式. 即: A(x)=a0 + a1* x + a2 * x2 +... 将A={(x1,A(x1)), (x2,A(x2)), (x3,A(x3))...}叫做A的点值表示法. 那么使用点值表示法做多项式乘法就很简单了:对应项相乘. 那么,如何将A和B转换成点值表示法,再将C转…
在项目中,需要画波形频谱图,因此进行查找,不是很懂相关知识,下列代码主要是针对这篇文章. http://blog.csdn.net/xcgspring/article/details/4749075 //快速傅里叶变换 /* 入口参数: inv: =1,傅里叶变换; =-1,逆傅里叶变换 N:输入的点数,为偶数,一般为2的幂次级,2,4,8,16... k: 满足N=2^k(k>0),实质上k是N个采样数据可以分解为偶次幂和奇次幂的次数 real[]: inv=1时,存放N个采样数据的实部,in…
视频来源:https://www.bilibili.com/video/av51932171?t=628. 博文来源:https://ww2.mathworks.cn/help/matlab/ref/fft.html?searchHighlight=fft&s_tid=doc_srchtitle 视频来源很好的解释了: 1 .傅里叶变换过程,经过傅里叶变化得到了,频率w,振幅a0,相位角φ: 2. 傅里叶变换 主要应用领域: 声音, 图像处理: 博文则很好的解释了: 1.  傅里叶变换在matl…
参考:http://blog.csdn.net/f_zyj/article/details/76037583 如果公式炸了请去我的csdn博客:http://blog.csdn.net/luyouqi233/article/details/79323568 原文即是一篇很好的FFT入门博客,但是笔者打算为了日后的学习,则将原篇章的结构删改增添一下,如有思路上的雷同十分正常. "是时候打开FFT的大门了!" 预备知识: 1.至少知道基础数论与一定解三角形知识(大概是高中水平). 2.定义…
洛谷 P3803 [模板]多项式乘法(FFT)传送门 存个板子,完全弄懂之后找机会再写个详解. #include<cstdio> #include<cmath> struct cpx { double rl,im; friend cpx operator + (cpx q,cpx w) { return (cpx){q.rl+w.rl,q.im+w.im}; } friend cpx operator - (cpx q,cpx w) { return (cpx){q.rl-w.rl…
[原创 转载请注明]瞎写的,如果代码有错,或者各位大佬有什么意见建议,望不吝赐教 更新日志: 对于规模较小的整数乘法使用$$O(n^2)$$方法,提高速度 modify()和operator[]的bug修正 除法速度提升 修正了除法崩溃的问题 修正了除数为零崩溃的问题 /** * BigN Beata v1.3.1 * By: Nathaniel * 13th,Dec,2017 **/ //This file provides four operation for big-intgers //Y…
1.FFT算法概要: FFT(Fast Fourier Transformation)是离散傅氏变换(DFT)的快速算法.即为快速傅氏变换.它是根据离散傅氏变换的奇.偶.虚.实等特性,对离散傅立叶变换的算法进行改进获得的. 2.FFT算法原理: 离散傅里叶变换DFT公式: FFT算法(Butterfly算法) 设x(n)为N项的复数序列,由DFT变换,任一X(m)的计算都需要N次复数乘法和N-1次复数加法,而一次复数乘法等于四次实数乘法和两次实数加法,一次复数加法等于两次实数加法,即使把一次复数…
FFT太玄幻了,不过我要先膜拜HQM,实在太强了 1.多项式 1)多项式的定义 在数学中,由若干个单项式相加组成的代数式叫做多项式.多项式中的每个单项式叫做多项式的项,这些单项式中的最高项次数,就是这个多项式的次数.其中多项式中不含字母的项叫做常数项. 2)多项式的表达 我们可以用一些不同的表达方式来表示一个多项式 \[f(x)=\sum_{i=0}^{i=n}a_i\cdot x^i\] 系数表达: 可以用一个n+1维的向量来表示 \[\vec{a}=(a_0,a_1,\cdots,a_n)\…
大力推荐博客: 傅里叶变换(FFT)学习笔记 一.多项式乘法: 我们要明白的是: FFT利用分治,处理多项式乘法,达到O(nlogn)的复杂度.(虽然常数大) FFT=DFT+IDFT DFT: 本质是把多项式的系数表达转化为点值表达.因为点值表达,y可以直接相乘.点值表达下相乘的复杂度是O(n)的. 我们分别对两个多项式求x为$\omega_n^i$时的y值. 然后可以O(n)求出乘积多项式x为$\omega_n^i$时的y值. 求法: 把F(x)奇偶分类. $FL(x)=a_0+a_2x+.…
学习了FFT用来求多项式的乘法,看了算导上的介绍,上面讲的非常明白,概括一下FFT的原理就是,我们在计算多项式的乘法时,如果暴力模拟的话是n^2 复杂度的,就像小学学的竖式乘法一样,比如一个n位数乘上一个n位数,我们需要用竖式乘法计算要列n行,每一行有n个元素,然后相邻两行错开一位(很显然,竖式乘法谁都会),如果我们换一种形式呢?有一种表达是叫做点值表达,就好像我们上了初中学二次函数,如果已知函数图像上的三个不同的点坐标,我们可以写出函数的表达式,那么就是说利用函数图象上的点我们也可以确定一个函…
本文主要简单写写自己在算法竞赛中学习FFT的经历以及一些自己的理解和想法. FFT的介绍以及入门就不赘述了,网上有许多相关的资料,入门的话推荐这篇博客:FFT(最详细最通俗的入门手册),里面介绍得很详细. 为什么要学习FFT呢?因为FFT能将多项式乘法的时间复杂度由朴素的$O(n^2)$降到$O(nlogn)$,这相当于能将任意形如$f[k]=\sum\limits _{i+j=k}f[i]\cdot f[j]$的转移方程的计算在$O(nlogn)$的时间内完成.因此对于想要进阶dp的同学来说,…
FFT是DFT的高效算法,能够将时域信号转化到频域上,下面记录下一段用python实现的FFT代码. # encoding=utf-8 import numpy as np import pylab as pl # 导入和matplotlib同时安装的作图库pylab sampling_rate = 8000 # 采样频率8000Hz fft_size = 512 # 采样点512,就是说以8000Hz的速度采512个点,我们获得的数据只有这512个点的对应时刻和此时的信号值. t = np.l…
终于补完坑了哈哈哈 这个东西很神奇,看了半天网上的解释和课件,研究了很长时间,算是大概明白了它的原理. 话不多说先上图. 我们要求的h(x)=f(x)*g(x),f(x)=Σai*x^i,g(x)=Σbi*x^i. 朴素求复杂度是n2的,但一个x次多项式在平面上可以由x+1个点唯一插值表示,所以我们可以先用求出x+1个点(xi,f(xi))和(xi,g(xi)),再求出(xi,f(xi)*g(xi)),就可以反解出    h(x)的表达式. 那么我们需要在nlogn的时间内干完这两步,首先xi的…
相关知识 时间域上的函数f(t)经过傅里叶变换(Fourier Transform)变成频率域上的F(w),也就是用一些不同频率正弦曲线的加 权叠加得到时间域上的信号. \[ F(\omega)=\mathcal{F}[f(t)]=\int\limits_{-\infty}^\infty f(t)e^{-iwt}dt \] 傅里叶逆变换是将频率域上的F(w)变成时间域上的函数f(t),一般称\(f(t)\)为原函数,称\(F(w)\)为象函数.原函数和象函数构成一个傅里叶变换对. \[ f(t)…
目录 FFT 系数表示法 点值表示法 复数 DFT(离散傅里叶变换) 单位根的性质 FFT(快速傅里叶变换) IFFT(快速傅里叶逆变换) NTT 阶 原根 扩展知识 FFT 参考blog: 十分简明易懂的FFT(快速傅里叶变换) 快速傅里叶变换(FFT)详解 (下面的图片是来自于这2篇博客里面的,仔细看可以发现右下角有水印--) 系数表示法 一个一元\(n\)次多项式\(f(x)\)可以被表示为:\[f(x) = \sum_{i = 0}^{n}a_{i}x^{i}\] 即用\(i\)次项的系…
题意: 给你一个数组a1~an,对于k=0~n,求出有多少个数组上的区间满足:区间内恰好有k个数比x小.x为一个给定的数.n<=10^5.值域没有意义. 分析: 大神们都说这道题是一个套路题,真是长见识%%%. 首先我们可以将题面转化,因为x是预先给出的,所以我们可以对其进行预处理,将数列中小于x的数都设为1,其他都为0,然后求一个前缀和,另前缀和数组为s[i]我们开一个数组v[i],记录在前缀和数组中数值i出现的次数. 然后我们可以得到这样一个式子 (据说看到这个式子就是套路了) 然后我们对这…
FFTFFT·Fast  Fourier  TransformationFast  Fourier  Transformation快速傅立叶变换 P3803 [模板]多项式乘法(FFT) 参考上文 首先介绍, 欧拉公式: 公式描述:公式中e是自然对数的底,i是虚数单位. 快速傅里叶变换(FFT)详解 前言: DFT:离散傅里叶变换—>O(n2)计算多项式乘法 FFT:快速傅里叶变换—>O(n∗log(n)O(n∗log⁡(n)计算多项式乘法 FNTT/NTT:快速傅里叶变换的优化版—>优…
多项式 定义 形如\(A(x)=\sum_{i=0}^{n-1} a_i x^i\)的式子称为多项式. 我们把\(n\)称为该多项式的次数界. 显然,一个\(n-1\)次多项式的次数界为\(n\). 运算法则 设\(A(x)\)和\(B(x)\)为多项式,且次数界分别为\(n\),\(m\).则有: \(A(x)=\sum_{i=0}^{n-1}a_i x^i\) \(B(x)=\sum_{i=0}^{m-1}b_i x^i\) 他们遵循下面的常用运算法则: \(A(x)+B(x)=\sum_{…
(原稿:https://paste.ubuntu.com/p/yJNsn3xPt8/) 快速傅里叶变换,是求两个多项式卷积的算法,其时间复杂度为$O(n\log n)$,优于普通卷积求法,且根据有关证明,快速傅里叶变换是基于变换求卷积的理论最快算法. 关于FFT的介绍,最详细易懂的是<算法导论>上的内容. 其大致介绍与代码在这里:http://www.cnblogs.com/rvalue/p/7351400.html. 1.FFT&NTT模板 #include<cmath>…
Intro: 本篇博客将会从朴素乘法讲起,经过分治乘法,到达FFT和NTT 旨在能够让读者(也让自己)充分理解其思想 模板题入口:洛谷 P3803 [模板]多项式乘法(FFT) 朴素乘法 约定:两个多项式为\(A(x)=\sum_{i=0}^{n}a_ix^i,B(x)=\sum_{i=0}^{m}b_ix^i\) Prerequisite knowledge: 初中数学知识(手动滑稽) 最简单的多项式方法就是逐项相乘再合并同类项,写成公式: 若\(C(x)=A(x)B(x)\),那么\(C(x…
https://blog.csdn.net/enjoy_pascal/article/details/81478582 FFT前言快速傅里叶变换 (fast Fourier transform),即利用计算机计算离散傅里叶变换(DFT)的高效.快速计算方法的统称,简称FFT.快速傅里叶变换是1965年由J.W.库利和T.W.图基提出的.采用这种算法能使计算机计算离散傅里叶变换所需要的乘法次数大为减少,特别是被变换的抽样点数N越多,FFT算法计算量的节省就越显著. FFT(Fast Fourier…
再探快速傅里叶变换(FFT)学习笔记(其三)(循环卷积的Bluestein算法+分治FFT+FFT的优化+任意模数NTT) 目录 再探快速傅里叶变换(FFT)学习笔记(其三)(循环卷积的Bluestein算法+分治FFT+FFT的优化+任意模数NTT) 写在前面 一些约定 循环卷积 DFT卷积的本质 Bluestein's Algorithm 例题 分治FFT 例题 FFT的弱常数优化 复杂算式中减少FFT次数 例题 利用循环卷积 小范围暴力 例题 快速幂乘法次数的优化 FFT的强常数优化 DF…
快速傅里叶变换(FFT) FFT 是之前学的,现在过了比较久的时间,终于打算在回顾的时候系统地整理一篇笔记,有写错的部分请指出来啊 qwq. 卷积 卷积.旋积或褶积(英语:Convolution)是通过两个函数 \(f\) 和 \(g\)​​ 生成第三个函数的一种数学算子. 定义 设 \(f,g\)​ 在 \(R1\)​ 上可积,那么 \(h(x) = \int_{-∞}^∞f(\tau)g(x-\tau)d\tau\) 称为 \(f\) 与 \(g\)​ 的卷积. 对于整系数多项式域,\(n-…
一.引入 首先,定义多项式的形式为 \(f(x)=\sum_{i=0}^n a_ix^i\),其中 \(a_i\) 为系数,\(n\) 为次数,这种表示方法称为"系数表示法",一个多项式是由其系数确定的. 可以证明,\(n+1\) 个点可以唯一确定一个 \(n\) 次多项式.对于 \(f(x)\),代入 \(n+1\) 个不同的 \(x\),得到 \(n+1\) 个不同的 \(y\).一个 \(n\) 次的多项式就可以等价地换成 \(n+1\) 个等式,相当于平面上的 \(n+1\)…
前言 啊摸鱼真爽哈哈哈哈哈哈 这个假期努力多更几篇( 理解本算法需对一些< 常 用 >数学概念比较清楚,如复数.虚数.三角函数等(不会的自己查去(其实就是懒得写了(¬︿̫̿¬☆) 整理了一点点资料(确信 本文仅为作者的总结与完善和本人的理解与观点,有任何误导性错误请多多指出 [WARNING]文笔极差,文章极度啰嗦且可能有些迷惑hhh,尽力了_(:з)∠)_ 概述(可略过 离散傅里叶变换(Discrete Fourier Transform,缩写为 DFT),是傅里叶变换在时域和频域上都呈离散…