【bzoj1005】 HNOI2008—明明的烦恼】的更多相关文章

1005: [HNOI2008]明明的烦恼 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 3032  Solved: 1209 Description 自从明明学了树的结构,就对奇怪的树产生了兴趣...... 给出标号为1到N的点,以及某些点最终的度数,允许在任意两点间连线,可产生多少棵度数满足要求的树? Input 第一行为N(0 < N < = 1000),接下来N行,第i+1行给出第i个节点的度数Di,如果对度数不要求,则输入-1 Outp…
1005: [HNOI2008]明明的烦恼 题目:传送门 题解: 毒瘤题啊天~ 其实思考的过程还是比较简单的... 首先当然还是要了解好prufer序列的基本性质啦 那么和1211大体一致,主要还是利用组合数学: 首先我们把度数和-n记录为sum,那么根据prufer序列,序列的元素个数就是n-2 那就是要在n-2个位置中选sum个,然后就是分别根据度数要求算每个元素在sum个位置中的方案,然后乘起来.最后还要乘上没有度数要求的元素的方案数就...ok啦 思考两分钟...代码两小时...太菜啦!…
Description 自从明明学了树的结构,就对奇怪的树产生了兴趣......给出标号为1到N的点,以及某些点最终的度数,允许在任意两点间连线,可产生多少棵度数满足要求的树? Input 第一行为N(0 < N < = 1000),接下来N行,第i+1行给出第i个节点的度数Di,如果对度数不要求,则输入-1 Output 一个整数,表示不同的满足要求的树的个数,无解输出0 Sample Input 3 1 -1 -1 Sample Output 2 HINT 两棵树分别为1-2-3;1-3-…
Description 自从明明学了树的结构,就对奇怪的树产生了兴趣...... 给出标号为1到N的点,以及某些点最终的度数,允许在任意两点间连线,可产生多少棵度数满足要求的树? Solution 这道题就是树的计数加强版,多了不要求的情况. 对于已限制的情况,就是C(n-2,t)*可重复元素的公式,考虑其他不限制的元素,再*(n-t)^(n-2-sum),t为已限制点个数,sum为已限制度数. 大概就是这个意思,计算要用分解质因数+高精度,具体细节自己推一推. Code 因为是高精乘低精,高精…
每个点的度数=prufer序列中的出现次数+1,所以即每次选一些位置放上某个点,答案即一堆组合数相乘.记一下每个因子的贡献分解一下质因数高精度乘起来即可. #include<iostream> #include<cstdio> #include<cmath> #include<cstdlib> #include<cstring> #include<algorithm> using namespace std; #define ll l…
Description 自从明明学了树的结构,就对奇怪的树产生了兴趣......给出标号为1到N的点,以及某些点最终的度数,允许在任意两点间连线,可产生多少棵度数满足要求的树? Input 第一行为N(0 < N < = 1000), 接下来N行,第i+1行给出第i个节点的度数Di,如果对度数不要求,则输入-1 Output 一个整数,表示不同的满足要求的树的个数,无解输出0 Sample Input 3 1 -1 -1 Sample Output 2 HINT 两棵树分别为1-2-3;1-3…
Description 自从明明学了树的结构,就对奇怪的树产生了兴趣......给出标号为1到N的点,以及某些点最终的度数,允许在任意两点间连线,可产生多少棵度数满足要求的树? Input 第一行为N(0 < N < = 1000),接下来N行,第i+1行给出第i个节点的度数Di,如果对度数不要求,则输入-1 Output 一个整数,表示不同的满足要求的树的个数,无解输出0 Sample Input - - Sample Output HINT 两棵树分别为1-2-3;1-3-2 Soluti…
https://www.lydsy.com/JudgeOnline/problem.php?id=1005 给出标号为1到N的点,以及某些点最终的度数,允许在任意两点间连线,可产生多少棵度数满足要求的树? 题解:prufer序列,prufer序列是一种无根树的编码表示,对于一棵n个节点带编号的无根树,对应唯一一串长度为n-2的prufer编码. prufer序列中某个编号出现的次数就等于这个编号的节点在无根树中的度数-1 所以一张n个点的无向完全图有n^(n-2)个生成树(长度为n-2的数列,每…
Brief Description 给出标号为1到N的点,以及某些点最终的度数,允许在 任意两点间连线,可产生多少棵度数满足要求的树? Algorithm Design 结论题. 首先可以参考这篇文章了解一下什么是Prufer编码: Cayley公式是说,一个完全图\(K_n\)有\(n^{n-2}\)棵生成树,换句话说n个节点的带标号的无根树有\(n^{n-2}\)个.今天我学到了Cayley公式的一个非常简单的证明,证明依赖于Prüfer编码,它是对带标号无根树的一种编码方式. 给定一棵带标…
#include<cstdio> #include<cstring> #include<algorithm> using namespace std; int N; ],D[],cnt=; ,q=; ]; ],len; int main(){ scanf("%d",&N); ){ int tmp; scanf("%d",&tmp); ) puts("); "); ; } ;i<=N;i++…