出现的问题:如图,总消费金额本应该为float类型,此处却显示object 需求:将 TotalCharges 的类型转换成float 使用 pandas.to_numeric(arg, errors='raise', downcast=None) 方法,可将参数转换为数字类型. (别的类型转换,遇到再补充) df = pd.read_excel('./data_files/Using_Customer-Churn.xlsx') # 将df.TotalCharges 转成数字类型的数据,则将无效…
背景:数据挖掘/机器学习中的术语较多,而且我的知识有限.之前一直疑惑正则这个概念.所以写了篇博文梳理下 摘要: 1.正则化(Regularization) 1.1 正则化的目的 1.2 正则化的L1范数(lasso),L2范数(ridge) 2.归一化 (Normalization)   2.1归一化的目的 2.1归一化计算方法 2.2.spark ml中的归一化 2.3 python中skelearn中的归一化 知识总结: 1.正则化(Regularization) 1.1 正则化的目的:我的…
Spyder   Ctrl + 4/5: 块注释/块反注释 本文总结的是我们大家在python中常见的数据预处理方法,以下通过sklearn的preprocessing模块来介绍; 1. 标准化(Standardization or Mean Removal and Variance Scaling) 变换后各维特征有0均值,单位方差.也叫z-score规范化(零均值规范化).计算方式是将特征值减去均值,除以标准差. sklearn.preprocessing.scale(X) 一般会把trai…
小伙伴们大家好~o( ̄▽ ̄)ブ,沉寂了这么久我又出来啦,这次先不翻译优质的文章了,这次我们回到Python中的机器学习,看一下Sklearn中的数据预处理和特征工程,老规矩还是先强调一下我的开发环境是Jupyter lab,所用的库和版本大家参考: Python 3.7.1(你的版本至少要3.4以上) Scikit-learn 0.20.0 (你的版本至少要0.19) Numpy 1.15.3, Pandas 0.23.4, Matplotlib 3.0.1, SciPy 1.1.0 1 skl…
1 数据无量纲化 在机器学习算法实践中,我们往往有着将不同规格的数据转换到同一规格,或不同分布的数据转换到某个特定分布的需求,这种需求统称为将数据“无量纲化”.譬如梯度和矩阵为核心的算法中,譬如逻辑回归,支持向量机,神经网络,无量纲化可以加快求解速度:而在距离类模型,譬如K近邻,K-Means聚类中, 无量纲化可以帮我们提升模型精度,避免某一个取值范围特别大的特征对距离计算造成影响.(一个特例是决策树和树的集成算法们,对决策树我们不需要无量纲化,决策树可以把任意数据都处理得很好.) 数据的无量纲…
文本数据预处理的第一步通常是进行分词,分词后会进行向量化的操作.在介绍向量化之前,我们先来了解下词袋模型. 1.词袋模型(Bag of words,简称 BoW ) 词袋模型假设我们不考虑文本中词与词之间的上下文关系,仅仅只考虑所有词的权重.而权重与词在文本中出现的频率有关. 词袋模型首先会进行分词,在分词之后,通过统计每个词在文本中出现的次数,我们就可以得到该文本基于词的特征,如果将各个文本样本的这些词与对应的词频放在一起,就是我们常说的向量化.向量化完毕后一般也会使用 TF-IDF 进行特征…
深度挖坑:从数据角度看人脸识别中Feature Normalization,Weight Normalization以及Triplet的作用 周翼南 北京大学 工学硕士 373 人赞同了该文章 基于深度学习的人脸识别发展,从deepid开始,到今年(或者说去年),已经基本趋于成熟. 凡是基于识别的,总是离不开三个东西:数据,网络,以及loss. 数据方面, 目前的公开数据集中有主打类别数的MS_celeb_1M,有主打各种姿态角与年龄的VggFace2:也有一些主打高质量的数据集,像WebFac…
敲<Python机器学习及实践>上的code的时候,对于数据预处理中涉及到的fit_transform()函数和transform()函数之间的区别很模糊,查阅了很多资料,这里整理一下: # 从sklearn.preprocessing导入StandardScaler from sklearn.preprocessing import StandardScaler # 标准化数据,保证每个维度的特征数据方差为1,均值为0,使得预测结果不会被某些维度过大的特征值而主导 ss = Standard…
前言: 归一化(区别于标准化)一般是指,把数据变换到(0,1)之间的小数.主要是为了方便数据处理,或者把有量纲表达式变成无量纲表达式,便于不同单位或量级的指标能够进行比较和加权. 不过还是有很多人使用时将归一化(normalization)和标准化(standardization)两个概念混淆,在这里我们就不过多讨论了.这里的归一化主要指的是这个常用的公式: x' = (x - X_min) / (X_max - X_min) 最近使用openlayers添加heatmap图层的时候,查看官方文…
原文链接 简介 为发挥 SIMD1 的最大作用,除了对其进行矢量化处理2外,我们还需作出其他努力.可以尝试为循环添加 #pragma omp simd3,查看编译器是否成功进行矢量化,如果性能有所提升,则达到满意状态. 然而,可能性能根本不会提升,甚至还会降低. 无论处于何种情况,为了最大限度发挥 SIMD 执行的优势并实现性能提升,通常需要重新设计算法和数据布局,以便生成的 SIMD 代码尽可能高效. 另外还可收到额外的效果,即标量(非矢量化)版代码会表现得更好. 本文将通过一个 3D 动画算…