左右lcm,gcd一些性质】的更多相关文章

两个整数a,b  他们的最大公约数为n  最小公倍数为m  则有 a,b都能分解为有限个素数的积               12 = 2^2 * 3^1 * 5^0 , 30 = 2^1 * 3^1 * 5^1 n为a,b全部素因子取较小指数的积          n = 2^1 * 3^1 * 5^0 = 6 m为a,b全部素因子取较大指数的积         m = 2^2 * 3^1 * 5^1 = 60 n中仅仅含a,b的全部公共素因子                 n = 2^1…
题意:给出b 求lcm(a,b)/a 在b从1-1e18有多少个不同得结果 思路lcm*gcd=a*b  转换成    b/gcd(a,b) 也就是看gcd(a,b)有多少个值  可以把b 由唯一分解定理 分解一下    然后组合一下各个因子就是由多少种了 注意: 因为唯一分解定律都是素数   思考一下可以 知道  不可能有两种不同的组合方式得到同一个 结果 所以可以放心得用 #include<bits/stdc++.h> using namespace std; const int maxn…
分析:对于区间[i,j],枚举j. 固定j以后,剩下的要比较M_gcd(k,j) = gcd(ak,...,aj)*(j-k+1)的大小, i≤k≤j. 此时M_gcd(k,j)可以看成一个二元组(g, k). 根据gcd的性质gcd(a1,a2,...,an) = gcd(a1,gcd(a2,..,an)),而且gcd(a,b) | b. 如果gcd(ak,...,aj) != gcd(ak+1,...,aj),那么gcd(ak,...,aj) ≤ 2*gcd(ak+1,...,aj). 原本…
洛谷题面传送门 学校模拟赛的某道题让我联想到了这道题-- 先讲一下我的野鸡做法. 首先考虑分治,对于左右端点都在 \([L,R]\) 中的区间我们将其分成三类:完全包含于 \([L,mid]\) 的区间,完全包含于 \([mid+1,R]\) 的区间,和跨过中间点的区间.前两种我们只需进一步递归 \([L,mid]\) 和 \([mid+1,R]\) 即可求解出答案,比较麻烦的是第三种.我们考虑先扫一遍预处理出 \(F_i=\gcd(a_i,a_{i+1},\cdots,a_{mid})\),以…
题目连接:http://www.spoj.com/problems/LGLOVE/ 题意:给出n个初始序列a[1],a[2],...,a[n],b[i]表示LCM(1,2,3,...,a[i]),即1~a[i]的最小公倍数 然后给出三种操作,注意:0<=i,j<n 0 i j p :a[i]~a[j]都加上p 1 i j :求LCM(b[i],b[i+1],...,b[j]) 2 i j :求GCD(b[i],b[i+1],...,b[j]) 思路: 求LCM(b[i],b[i+1],...,…
链接: https://loj.ac/problem/6229 题意: \[F(n)=\sum_{i=1}^n\sum_{j=1}^i\frac{\mathrm{lcm}(i,j)}{\mathrm{gcd}(i,j)}\] 让你求 \(F(n) \bmod1000000007\). 题解: 设\(\begin{align} f(n)=\sum_{i=1}^n\frac{lcm(i,n)}{gcd(i,n)}&=\sum_{i=1}^n\frac{n*i}{(i,n)^2}\\ &=\su…
题意: GCD(a,b) + LCM(a,b) = n,已知 n ,求 a,b. 思路: 设 gcd(a, b) = k, a = xk, b = yk , k + ab / k = n xy = n/k - 1 令 k = 1 , 则 xy = n - 1 令 x = 1 , 则 y = n - 1 ∴ a = xk = 1 , b = yk = n-1 一定满足条件. #include <bits/stdc++.h> using namespace std; typedef long lo…
4028: [HEOI2015]公约数数列 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 865  Solved: 311[Submit][Status][Discuss] Description 设计一个数据结构. 给定一个正整数数列 a_0, a_1, ..., a_{n - 1},你需要支持以下两种操作: 1. MODIFY id x: 将 a_{id} 修改为 x. 2. QUERY x: 求最小的整数 p (0 <= p < n),使…
题意: LCM(a, b) = X,求 max(a, b) 的最小值. 思路: a, b 只可能存在于 X 的因子中,枚举即可. #include <bits/stdc++.h> using namespace std; typedef long long ll; ll lcm(ll a,ll b){ return a*b/__gcd(a,b); } void solve(){ ll n;cin>>n; ll ans=1; for(ll i=1;i*i<=n;i++) if(…
最大公约数:gcd 最大公倍数:lcm gcd和lcm的性质:(我觉得主要是第三点性质) 若gcd (…