Pollard-Rho算法求大数质因子】的更多相关文章

/* * 大整数分解到现在都是世界级的难题,但却是一个重要的研究方向,大整数在公共密钥的研究上有着重要的作用 * Pollard Rho算法的原理就是通过某种方法得到两个整数a和b.而待分解的大整数为n,计算p=gcd(abs(a-b),n),直到p不为1或者a,b出现循环为止. * 然后再判断是否为n,如果p==n||p==1,那么返回n时一个质数 * 否则p就是n的一个因子 * 那么我们又可以递归地计算Pollard(p)和Pollard(n/p). * 最后就可以推出n的所有质因子 * *…
题目 题意: 给一个数N,两人轮流操作每次将N变为一个N的非1非自身的因数,第一个无法进行操作的人获胜问先手是否有必胜策略,如果有的话在第二行输出第一步换成哪个数,如果第一步就不能操作则输出0数据规模:N≤10^13. 思路: 当N为1或者质数时,先手胜且输出0当N恰为两个质数的乘积时,先手负,因为他必须写下一个质数,使后手获胜其他情况下,他只要写下N的任意两个质因数的乘积就能获胜. #include <iostream> #include <cstring> #include &…
\(\text{update 2019.8.18}\) 由于本人将大部分精力花在了cnblogs上,而不是洛谷博客,评论区提出的一些问题直到今天才解决. 下面给出的Pollard Rho函数已给出散点图.关于\(Millar Robin\)算法的时间复杂度在我的博客应该有所备注.由于本人不擅长时间复杂度分析,如果对于时间复杂度有任何疑问,欢迎在下方指出. 1.1 问题的引入 给定一正整数\(N \in \mathbb{N}^*\),试快速找到它的一个因数. 很久很久以前,我们曾学过试除法来解决这…
一些前置知识可以看一下我的联赛前数学知识 如何判断一个数是否为质数 方法一:试除法 扫描\(2\sim \sqrt{n}\)之间的所有整数,依次检查它们能否整除\(n\),若都不能整除,则\(n\)是质数,否则\(n\)是合数. 代码 bool is_prime(int n){ if(n<2) return 0; int m=sqrt(n); for(int i=2;i<=m;i++){ if(n%i==0) return 0; } return 1; } 方法二.线性筛 用 \(O(n)\)…
BZOJ 3667: Rabin-Miller算法 Time Limit: 60 Sec  Memory Limit: 512 MBSubmit: 1044  Solved: 322[Submit][Status][Discuss] Description   Input 第一行:CAS,代表数据组数(不大于350),以下CAS行,每行一个数字,保证在64位长整形范围内,并且没有负数.你需要对于每个数字:第一,检验是否是质数,是质数就输出Prime 第二,如果不是质数,输出它最大的质因子是哪个.…
前言 \(Pollard\ Rho\)是一个著名的大数质因数分解算法,它的实现基于一个神奇的算法:\(MillerRabin\)素数测试(关于\(MillerRabin\),可以参考这篇博客:初学MillerRabin素数测试). 期望下,\(Pollard\ Rho\)算法可以达到极快的复杂度. 核心思想 在\(ZJOI2019Day1\)讲课期间,它是被\(CQZ\)神仙作为随机算法内的一部分来进行介绍的. 由此可见,其核心思想便是随机二字. 操作流程 首先,我们先用\(MillerRabi…
Pollard Rho介绍 Pollard Rho算法是Pollard[1]在1975年[2]发明的一种将大整数因数分解的算法 其中Pollard来源于发明者Pollard的姓,Rho则来自内部伪随机算法固有的循环 Pollard Rho算法在其他因数分解算法[3]中不算太出众,但其空间复杂度Θ(1)的优势和好打的代码使得OIer更倾向于使用Pollard Rho算法 毕竟试除法太慢了,谁没事打Pollard Rho不打试除法 Pollard Rho原理 生日悖论 如果一年只有365天(不计算闰…
试题 算法提高 Monday-Saturday质因子 资源限制 时间限制:1.0s 内存限制:256.0MB 问题描述 这个问题是个简单的与数论有关的题目,看起来似乎是"求正整数的所有质因子",但实际上并不完全是这样. 本题中需要定义以下几个概念: 1. Monday-Saturday数 对于一个正整数N,如果它除以7得到的余数是1或6,则可以写成N=7k+{1,6}的形式.更形象的,我们把这样的N称作"Monday-Saturday数",简称"MS数&q…
#include <iostream> #include <cstring> #include <cstdlib> #include <stdio.h> #include <algorithm> #include <math.h> #include <stdlib.h> #include<time.h> #define ll long long #define INF 0x3f3f3f3f #define ma…
题目链接 (BZOJ) https://www.lydsy.com/JudgeOnline/problem.php?id=5330 (Luogu) https://www.luogu.org/problem/P4607 题解 首先观察一些性质. 一个回文串可以轮换产生多少个本质不同的串?周期那么多个. 可是有一种特殊情况,就是对于长度为偶数的回文串\(a=ss^Rss^Rss^R...ss^R\) (\(s^R\)表示\(s\)的reverse), 如果轮换位数恰好等于周期的一半,那么会产生\(…
题目链接 容易发现如果我们求出p和q这题就差不多快变成一个sb题了. 于是我们就用Pollard Rho算法进行大数分解. 至于这个算法的原理,emmm 其实也不是很清楚啦 #include<cstdio> #include<cstring> #include<algorithm> #include<cstdlib> #include<cctype> #include<ctime> using namespace std; inlin…
2017-07-19 08:54 Amphetamine:能发一下代码吗? 应我那位谜一样好友的邀约,我打算好好看一看Miller-Rabin和Pollard-Rho算法.很奇怪,各种地方有很多代码描述详细过程,但我仍旧很懵.也许是我太弱了,不能从那些“鱼龙混杂”的代码中找出本质上的共性.那么,我们现在来讨论一下吧. 首先,大整数分解现在仍然是个世界级的难题,在“公共密钥”的研究上有着重要的作用. !!先判断质数!! 试除法:原始的根号算法 额.不想说了.正经一点. Miller-Rabin:判…
Pollard-Rho 是一个很神奇的算法,用于在 $O(n^{\frac{1}4}) $的期望时间复杂度内计算合数 n 的某个非平凡因子(除了1和它本身以外能整除它的数).事书上给出的复杂度是 \(O(\sqrt{p})\) , p 是 n 的某个最小因子,满足 p 与 n/p 互质.虽然是随机的,但 Pollard Rho 算法在实际环境中运行的相当不错,不会被卡. 简单来说:Pollard-Rho算法是 John Pollard发明的一种能 快速找到大整数的一个非1.非自身的因子 的算法.…
有一类问题,要求我们将一个正整数x,分解为两个非平凡因子(平凡因子为1与x)的乘积x=ab. 显然我们需要先检测x是否为素数(如果是素数将无解),可以使用Miller-Rabin算法来进行测试. Pollard Rho是一个非常玄学的方式,用于在O(n^1/4)的期望时间复杂度内计算合数n的某个非平凡因子.事实上算法导论给出的是O(√p),p是n的某个最小因子,满足p与n/p互质.但是这些都是期望,未必符合实际.但事实上Pollard Rho算法在实际环境中运行的相当不错. Pollard Rh…
谁是英雄 时间限制:1000 ms  |  内存限制:65535 KB 难度:3 描述 十个数学家(编号0-9)乘气球飞行在太平洋上空.当横越赤道时,他们决定庆祝一下这一壮举.于是他们开了一瓶香槟.不幸 的是,软木塞在气球上打了一个洞,氢气泄漏,气球开始下降,眼看就要落入海中,所有人将要被鲨鱼吃掉. 但是尚有一线生机--若其中一人牺牲自己跳下去的话,那他的朋友们还能多活一会儿.但仍然有一个问题存在--谁 跳下去?所以他们想了一个非常公平的办法来解决这个问题--首先,每人写一个整数ai:然后计 算…
前言 $Miller-Robbin$ 与 $Pollard Rho$ 虽然都是随机算法,不过用起来是真的爽. $Miller Rabin$ 算法是一种高效的质数判断方法.虽然是一种不确定的质数判断法,但是在选择多种底数的情况下,正确率是可以接受的. $Pollard Rho$ 是一个非常玄学的方式,用于在 $O(n^{1/4})$ 的期望时间复杂度内计算合数$n$的某个非平凡因子. 事实上算法导论给出的是 $O(\sqrt p)$ , $p$ 是 $n$ 的某个最小因子,满足 $p$ 与 $\f…
\(\\\) Miller-Rabin 素性测试 考虑如何检验一个数字是否为素数. 经典的试除法复杂度 \(O(\sqrt N)\) 适用于询问 \(N\le 10^{16}\) 的时候. 如果我们要把询问范围加到 \(10^{18}\) ,再多组询问呢? Miller 和 Rabin 建立了Miller-Rabin 质数测试算法. \(\\\) Fermat 测试 首先我们知道费马小定理: \[ a^{p-1}\equiv 1\pmod p \] 当且仅当 \(p\) 为素数时成立. 逆命题是…
3181: [Coci2012]BROJ Time Limit: 10 Sec   Memory Limit: 64 MB Submit: 26   Solved: 7 [ Submit][ Status] Description 求最小质因子等于p的第n小的正整数(恰好有n-1个最小质因子等于p且比它 小的正整数).p一定是质数.若答案超过10^9则输出0. Input   Output   Sample Input 2 3 Sample Output 9 HINT 1 <= n, p <=…
整数分解,又称质因子分解.在数学中,整数分解问题是指:给出一个正整数,将其写成几个素数的乘积的形式. (每个合数都可以写成几个质数相乘的形式,这几个质数就都叫做这个合数的质因数.) .试除法(适用于范围比较小) 无论素数判定还是因子分解,试除法(Trial Division)都是首先要进行的步骤.令m=n,从2~根n一一枚举,如果当前数能够整除m,那么当前数就是n的素数因子,并用整数m 将当前数除尽为止. 若循环结束后m是大于1的整数,那么此时m也是n的素数因子. 事例如HDU1164:15mm…
BZOJ_3667_Rabin-Miller算法_Mille_Rabin+Pollard rho Description Input 第一行:CAS,代表数据组数(不大于350),以下CAS行,每行一个数字,保证在64位长整形范围内,并且没有负数.你需要对于每个数字:第一,检验是否是质数,是质数就输出Prime 第二,如果不是质数,输出它最大的质因子是哪个. Output 第一行CAS(CAS<=350,代表测试数据的组数) 以下CAS行:每行一个数字,保证是在64位长整形范围内的正数. 对于每…
这一场两个和大数有关的题目,都用到了米勒拉宾算法,有点东西,备忘一下. 题目传送门 F. Divisions 传送门 这个题是求一个数的所有因子个数,但是数据比较大,1e18,所以是大数的题目,正常的求因数的或者求质因数的都过不了,因为这一场的K是米勒拉宾判大素数,先过的K题,所以这个题直接头铁用Miller_Rabin+Pollard_rho这两个东西+因子个数求解公式写过去了. 这两个算法的具体原理不清楚.从别人那里知道了一点. Miller_Rabin算法的作用是判断一个数是否是个素数,算…
快速求n的质因子 如何尽快地求出n的质因子呢?我们这里又涉及两个好的算法了! 第一个:用于每次只能求出一个数的质因子,适用于题目中给的n的个数不是很多,但是n又特别大的 #include<stdio.h> int main() { __int64 a[100],num,i,n; while(scanf("%I64d",&n)!=EOF) { num=0; for(i=2;i*i<=n;i++) { if(n%i==0) { a[num++]=i; while(…
Miller-Rabin 素性测试 Miller-Rabin 素数测试 一本通上的M-R不透彻啊~ Miller-Rabin是利用随机化算法判断一个数是合数还是素数. 首先,如果一个数N是素数,那么他一定满足费马小定理. \(a^{N-1}\equiv1\pmod N\) 我们可以任取数字a,计算这个式子的值来判断N是否为素数. 但是这么做不靠谱啊,有很多合数会被卡~ 我们介绍一个相关的引理. 当p是素数且p大于2时,\(1\bmod p\)的平方根只有1和-1. 证明: 假设x是\(1\bmo…
题目链接:http://poj.org/problem?id=2992 题目要求:Your task in this problem is to determine the number of divisors of Cnk. Just for fun -- or do you need any special reason for such a useful computation? 题目解析:这题也是TLE了无数遍,首先说一下求因子数目的函数是积性函数,积性函数即f(n)=f(a)*f(b)…
RGCDQ 题意:F(x)表示x的质因子的种数.给区间[L,R],求max(GCD(F(i),F(j)) (L≤i<j≤R).(2<=L < R<=1000000) 题解:可以用素数筛求质因子种数(这不用多说,看下代码init()中内容就能理解).然而R的范围太大,会TLE.因此只能用空间换时间了. 可以用一个二维数组num[i][j] 保存x<=i&&F(x)=j的x的个数.(预处理,有点dp的思想) 2*3*5*7*11*13*17 > 10 ^ 6…
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4497 题意:已知GCD(x, y, z) = G,LCM(x, y, z) = L.告诉你G.L,求满足要求的(x, y, z)有多少组,并且要考虑顺序. 思路:如果L%G != 0显然不存在这样的(x, y, z),相反肯定存在.具体做法就是将L/G分解质因子,得到:L/G = P1^t1 * P2^t2 * ... * Pk^tk,我们来考虑任意一个因子Pi^ti,此时(x/G, y/G, z/…
<题目链接> 题目大意: 给定区间[A,B](1 <= A <= B <= 10 15)和N(1 <=N <= 10 9),求出该区间中与N互质的数的个数. 解题分析: 将求区间[A,B]与N互质的数转化成求[1,B] 区间与N互质的个数  -  [1,A-1]中与N互质的个数.同时,因为直接求区间内与N互质的数不好求,我们从反面入手,求出与N不互质的数,借鉴埃筛的思想,我们先求出N的所有质因子,然后将这些质因子在区间内倍数的个数全部求出(即与N不互质的数),再用…
对于一个数n 设它有两个不是互质的因子a和b   即lcm(a,b) = n 且gcd为a和b的最大公约数 则n = a/gcd * b: 因为a/gcd 与 b 的最大公约数也是n 且 a/gcd + b < a + b 又因为a/gcd 与 b 互质  所以n的最小的因子和为 所有质因子的和 同理推广到多个质因子 由算术基本定理求出所有的质因子 则 nut = 所有质因子 ^ 个数 的和  自己想一想为什么把... 注意n为1时 #include <iostream> #includ…
问题描述有一个数列,FancyCoder沉迷于研究这个数列的乘积相关问题,但是它们的乘积往往非常大.幸运的是,FancyCoder只需要找到这个巨大乘积的最小的满足如下规则的因子:这个因子包含大于两个因子(包括它本身:比如,4有3个因子,因此它是满足这个要求的一个数).你需要找到这个数字并输出它.但是我们知道,对于某些数可能没有这样的因子:在这样的情况下,请输出-1. 这个因子包含大于两个因子也就是说必须包含三个因子可以为本身求出所有数的所有质因子中最小的两个,相乘就是答案.如果所有数字的质因子…
static int length1(int num) //想着要定义一个函数取,质因子数组的长度 { ; ; i <= num; i++) //for循环中I 不会归零 只能遍历一次 { if (num == i) { arrayLength++; break;//只要 因子等于i了,说求到头了,跳出循环(要不还会执行下一个IF) } ) { arrayLength++; num = num / i; i = ;//因为得出的新的num 需要重新与i=2比较,所以手动赋值为1.. } } re…