./bin/spark-shell --master yarn 2019-07-01 12:20:13 WARN NativeCodeLoader:62 - Unable to load native-hadoop library for your platform... using builtin-java classes where applicable Setting default log level to "WARN". To adjust logging level use…
当spark跑在yarn上时 单个executor执行时,数据量过大时会导致executor的memory不足而使得rdd  最后lost,最终导致任务执行失败 其中会抛出如图异常信息 如图中异常所示 对应解决方法可以加上对应的参数调优(这个配置可以在总的处理数据量在几百TB或者1~3PB级别的数据处理时解决executor-memory不足问题) --num-executors=512 --executor-cores=8 --executor-memory=32g --driver-memo…
1.执行Spark运行在yarn上的命令报错 spark-shell --master yarn-client,错误如下所示: // :: ERROR SparkContext: Error initializing SparkContext. org.apache.spark.SparkException: Yarn application has already ended! It might have been killed or unable to launch application…
[摘要] Spark社区在2.3版本开始,已经可以很好的支持跑着Kubernetes上了.这样对于统一资源池,提高整体资源利用率,降低运维成本(特别是技术栈归一)有着非常大的帮助.这些趋势是一个大数据人不得不重视的信号,所以提前开始了解并考虑起来吧:-) 1      大数据邂逅云计算 相信玩Spark的你已经注意到最新的Spark版本已经支持不做任何修改可以直接跑在K8S上了,即以kubernetes容器集群作为Cluster Manager的实现.其实早在2017年底Spark 2.2版本开…
目录 目录 1 1. 约定 1 2. 安装Scala 1 2.1. 下载 2 2.2. 安装 2 2.3. 设置环境变量 2 3. 安装Spark 2 3.1. 下载 2 3.2. 安装 2 3.3. 配置 3 3.3.1. 修改conf/spark-env.sh 3 4. 启动Spark 3 4.1. 运行自带示例 3 4.2. SparkSQL Cli 4 5. 和Hive集成 4 6. 常见错误 5 6.1. 错误1:unknown queue: thequeue 5 6.2. SPARK…
1.为什么开启动态资源分配 ⽤户提交Spark应⽤到Yarn上时,可以通过spark-submit的num-executors参数显示地指定executor 个数,随后,ApplicationMaster会为这些executor申请资源,每个executor作为⼀个Container在 Yarn上运⾏.Spark调度器会把Task按照合适的策略分配到executor上执⾏.所有任务执⾏完后, executor被杀死,应⽤结束.在job运⾏的过程中,⽆论executor是否领取到任务,都会⼀直占有…
不多说,直接上干货! 问题详情 电脑8G,目前搭建3节点的spark集群,采用YARN模式. master分配2G,slave1分配1G,slave2分配1G.(在安装虚拟机时) export SPARK_WORKER_MERMORY=1g  (在spark-env.sh) export JAVA_HOME=/usr/local/jdk/jdk1..0_60 (必须写) export SCALA_HOME=/usr/local/scala/scala- (必须写) export HADOOP_H…
不多说,直接上干货! 问题详情 电脑8G,目前搭建3节点的spark集群,采用YARN模式. master分配2G,slave1分配1G,slave2分配1G.(在安装虚拟机时) export SPARK_WORKER_MERMORY=1g  (在spark-env.sh) export JAVA_HOME=/usr/local/jdk/jdk1.8.0_60 (必须写) export SCALA_HOME=/usr/local/scala/scala-2.10.5 (必须写) export H…
y欢迎转载,转载请注明出处,徽沪一郎. 概要 “spark已经比较头痛了,还要将其运行在yarn上,yarn是什么,我一点概念都没有哎,再怎么办啊.不要跟我讲什么原理了,能不能直接告诉我怎么将spark在yarn上面跑起来,I'm a dummy, just told me how to do it.” 如果你和我一样是一个对形而上的东西不是太感兴趣,而只纠结于怎么去做的话,看这份guide保证不会让你失望, :). 前期准备 本文所有的操作基于arch linux,保证下述软件已经安装 jdk…
架构图 yarn-cluster yarn-client 区别 Yarn-cluster spark的driver运行在applicationMaster内,启动流程为: 这张图可能比较直观 Yarn-client Spark client向yarn的RM申请资源容器,得到AM,但是这个AM运行在其他nodemanager,并得到其他executor的运行容器.而spark的driver运行在client中. 总结 Yarn-client有单点故障的问题,当client意外死亡后,spark的d…