在神经网络入门回顾(感知器.多层感知器)中整理了关于感知器和多层感知器的理论,这里实现关于与门.与非门.或门.异或门的代码,以便对感知器有更好的感觉. 此外,我们使用 pytest 框架进行测试. pip install pytest 与门.与非门.或门 通过一层感知器就可以实现与门.与非门.或门. 先写测试代码 test_perception.py: from perception import and_operate, nand_operate, or_operate def test_an…
感知器-从零开始学深度学习 未来将是人工智能和大数据的时代,是各行各业使用人工智能在云上处理大数据的时代,深度学习将是新时代的一大利器,在此我将从零开始记录深度学习的学习历程. 我希望在学习过程中做到以下几点: 了解各种神经网络设计原理. 掌握各种深度学习算法的python编程实现. 运用深度学习解决实际问题. 让我们开始踏上深度度学习的征程. 一.感知器原型 想要了解“神经网络”,我们需要了解一种叫做“感知器”的⼈⼯神经元.感知器在 20 世纪五.六⼗年代由科学家 Frank Rosenbla…
最近在看机器学习相关的书籍,顺便把每天阅读的部分写出来和大家分享,共同学习探讨一起进步!作为机器学习的第一篇博客,我准备从感知器开始,之后会慢慢更新其他内容. 在实现感知器算法前,我们需要先了解一下神经元(neuron)的工作原理,神经元有很多树突和一个轴突,树突(Dendrites)可以从其他神经元接收信息并将其带到细胞体(Cell nucleus),轴突(Axon)可以从细胞体发送信息到其他神经元.树突传递过来的信息在细胞体中进行计算处理后,如果结果超过某个阈值,轴突会传递信号到其他的神经元…
手撕机器学习系列文章就暂时更新到此吧,目前已经完成了支持向量机SVM.决策树.KNN.贝叶斯.线性回归.Logistic回归,其他算法还请允许Taoye在这里先赊个账,后期有机会有时间再给大家补上. 更新至此,也是收到了部分读者的好评.虽然不多,但还是非常感谢大家的支持,希望每一位阅读过的读者都能够有所收获. 该系列文章的全部内容都是Taoye纯手打,也是参考了不少书籍以及公开资源,系列总字数在15W左右(含源码),总页数为138,后期会再慢慢填补,更多的技术文章可以来访Taoye的公众号:玩世…
写在前面: 参考: 1  <统计学习方法>第二章感知机[感知机的概念.误分类的判断]   http://pan.baidu.com/s/1hrTscza 2   点到面的距离 3   梯度下降 4   NumPy-快速处理数据    属性shape:表示几行几列:   dot(a,b) 计算数组.矩阵的乘积 感知器算法: Python实现: #coding:utf-8 import numpy as np class Perceptron(object): def __init__(self)…
(1)感知器模型 感知器模型包含多个输入节点:X0-Xn,权重矩阵W0-Wn(其中X0和W0代表的偏置因子,一般X0=1,图中X0处应该是Xn)一个输出节点O,激活函数是sign函数. (2)感知器学习规则 输入训练样本X和初始权重向量W,将其进行向量的点乘,然后将点乘求和的结果作用于激活函数sign(),得到预测输出O,根据预测输出值和目标值之间的差距error,来调整初始化权重向量W.如此反复,直到W调整到合适的结果为止. (3)算法的原始形式 (4)Python代码实现 import nu…
感知器是由美国计算机科学家罗森布拉特(F.Roseblatt)于1957年提出的.感知器可谓是最早的人工神经网络.单层感知器是一个具有一层神经元.采用阈值激活函数的前向网络.通过对网络权值的训练,可以使感知器对一组输人矢量的响应达到元素为0或1的目标输出,从而实现对输人矢量分类的目的. 下图是一个感知器: 可以看到,一个感知器有如下组成部分: 01 输入权值: 其中,每一个输入分量Xj(j=1,2…,r)通过一个权值分量wj,进行加权求和,并作为阈值函数的输人.偏差 b 的加入(对应上图中的 w…
本文目录: 1. 感知器 2. 感知器的训练法则 3. 梯度下降和delta法则 4. python实现 1. 感知器[1] 人工神经网络以感知器(perceptron)为基础.感知器以一个实数值向量作为输入,计算这些输入的线性组合,然后如果结果大于某个阈值,就输出1,否则输出-1(或0).更精确地,如果输入为$x_1$到$x_n$,那么感知器计算的输出为: 其中,$w_i$是实数常量,叫做权值,用来决定输入$x_i$对感知器输出的贡献率.因为仅以一个阈值来决定输出,我们有时也把这种感知器叫做硬…
如果对Rosenblatt感知器不了解,可以先查看下相关定义,然后对照下面的代码来理解. 代码中详细解释了各步骤的含义,有些涉及到了数学公式的解释. 这篇文章是以理解Rosenblatt感知器的原理为主,所以只实现了单层感知器,比较复杂的 多层的感知器会在后面写到. 下面是详细代码及说明: ''' 算法:Rosenblatt感知器=====>单层感知器 特性:提供快速的计算,能够实现逻辑计算中的NOT.OR.AND等简单计算 本质:在坐标轴轴里面存在一条直线(面)可以把数据分成两类 ''' ''…
感知器学习的目标是求得一个能够将训练集正实例点和负实例点·完全正确分开的分离超平面.即找到这超平面的参数w,b. 超平面定义 w*x+b=0 其中w是参数,x是数据.公式很好理解以二维平面为例,w有两个参数x0,x1.确定其中一个参数x0就可以确定另一个参数x1所以,二维中超平面w*x+b=0就是一条直线.三维中,w有三个参数w0,w1,w2.确定其中两个就可以确定另一个参数,所以超平面是一个面. 找到超平面后,超平面上面的是的是正类,下面的是负类,可以将线性可分数据集分开. 其中定义中的w是超…