BERT】的更多相关文章

BERT预训练模型在诸多NLP任务中都取得最优的结果.在处理文本分类问题时,即可以直接用BERT模型作为文本分类的模型,也可以将BERT模型的最后层输出的结果作为word embedding导入到我们定制的文本分类模型中(如text-CNN等).总之现在只要你的计算资源能满足,一般问题都可以用BERT来处理,此次针对公司的一个实际项目——一个多类别(61类)的文本分类问题,其就取得了很好的结果. 我们此次的任务是一个数据分布极度不平衡的多类别文本分类(有的类别下只有几个或者十几个样本,有的类别下…
深度长文:NLP的巨人肩膀(上):https://www.jiqizhixin.com/articles/2018-12-10-17 NLP 的巨人肩膀(下):从 CoVe 到 BERT: https://www.jiqizhixin.com/articles/2018-12-17-17?from=synced&keyword=NLP%E7%9A%84%E5%B7%A8%E4%BA%BA%E8%82%A9%E8%86%80 图解2018年领先的两大NLP模型:BERT和ELMo:https://…
转载 https://zhuanlan.zhihu.com/p/49271699 首发于深度学习前沿笔记 写文章   从Word Embedding到Bert模型—自然语言处理中的预训练技术发展史 张俊林 你所不知道的事 179 人赞了该文章 Bert最近很火,应该是最近最火爆的AI进展,网上的评价很高,那么Bert值得这么高的评价吗?我个人判断是值得.那为什么会有这么高的评价呢?是因为它有重大的理论或者模型创新吗?其实并没有,从模型创新角度看一般,创新不算大.但是架不住效果太好了,基本刷新了很…
Bert预训练源码 主要代码 地址:https://github.com/google-research/bert create_pretraning_data.py:原始文件转换为训练数据格式 tokenization.py:汉字,单词切分,复合词处理,create_pretraning_data中调用 modeling.py: 模型结构 run_pretraing.py: 运行预训练 tokenization.py 作用:句子切分,特殊符号处理. 主要类:BasicTokenizer, Wo…
1 大纲概述 文本分类这个系列将会有十篇左右,包括基于word2vec预训练的文本分类,与及基于最新的预训练模型(ELMo,BERT等)的文本分类.总共有以下系列: word2vec预训练词向量 textCNN 模型 charCNN 模型 Bi-LSTM 模型 Bi-LSTM + Attention 模型 RCNN 模型 Adversarial LSTM 模型 Transformer 模型 ELMo 预训练模型 BERT 预训练模型 所有代码均在textClassifier仓库中. 2 数据集…
目录 从词袋模型到BERT 分析BERT表示 不考虑上下文的方法 考虑语境的方法 结论 本文翻译自Are BERT Features InterBERTible? 从词袋模型到BERT ​ Mikolov等人提出Word2Vec已经过去很长时间了.当时似乎每一个玩机器学习的人都能背出"国王减去男人加上女人等于女王"这条"咒语".如今,这些可解释的词嵌入已经成了许多基于深度学习的NLP系统的核心部分. ​ 去年10月份,Google AI放出了BERT模型,即 Bid…
目录 引言 概览 Token Embeddings 作用 实现 Segment Embeddings 作用 实现 Position Embeddings 作用 实现 合成表示 结论 参考文献 本文翻译自Why BERT has 3 Embedding Layers and Their Implementation Details 引言 ​ 本文将阐述BERT中嵌入层的实现细节,包括token embeddings.segment embeddings, 和position embeddings.…
目录 NLP中的预训练 语境表示 语境表示相关研究 存在的问题 BERT的解决方案 任务一:Masked LM 任务二:预测下一句 BERT 输入表示 模型结构--Transformer编码器 Transformer vs. LSTM 模型细节 在不同任务上进行微调 GLUE SQuAD 1.1 SQuAD 2.0 SWAG 分析 预训练的影响 方向与训练时间的影响 模型规模的影响 遮罩策略的影响 多语言BERT(机器翻译) 生成训练数据(机器阅读理解) 常见问题 结论 翻译自Jacob Dev…
目录 一.例子:句子分类 二.模型架构 模型的输入 模型的输出 三.与卷积网络并行 四.嵌入表示的新时代 回顾一下词嵌入 ELMo: 语境的重要性 五.ULM-FiT:搞懂NLP中的迁移学习 六.Transformer:超越LSTM 七.OpenAI Transformer:为语言建模预训练一个Transformer解码器 八.在下游任务中使用迁移学习 九.BERT:从解码器到编码器 MLM语言模型 两个句子的任务 解决特定任务的模型 用于特征提取的BERT 十.把BERT牵出来遛一遛 本文翻译…
来源商业新知网,原标题:深入理解BERT Transformer ,不仅仅是注意力机制 BERT是google最近提出的一个自然语言处理模型,它在许多任务 检测上表现非常好. 如:问答.自然语言推断和释义而且它是开源的.因此在社区中非常流行. 下图展示了不同模型的GLUE基准测试分数(不同NLP评估任务的平均得分)变化过程. 尽管目前还不清楚是否所有的GLUE任务都非常有意义,但是基于Trandformer编码器的通用模型(Open-GPT.BERT.BigBird),在一年内缩小了任务专用模型…