动态规划_Sumsets_POJ-2229】的更多相关文章

POJ3176 Cow Bowling 题意 输入一个n层的三角形,第i层有i个数,求从第1层到第n层的所有路线中,权值之和最大的路线. 规定:第i层的某个数只能连线走到第i+1层中与它位置相邻的两个数中的一个. 思路 最显而易见的是使用二维数组动态规划计算. 比如dp[i][j]表示以第i行j列的位置作为终点的路线的最大权值. (注意区分初始化时的意义) 那么dp[i][j]的最大值取决于dp[i-1][j-1]和dp[i-1][j],从这两者之间筛选出最大值,加到dp[i][j]上,即为dp…
http://poj.org/problem?id=2229 先把题目连接发上.题目的意思就是: 把n拆分为2的幂相加的形式,问有多少种拆分方法. 看了大佬的完全背包代码很久都没懂,就照着网上的写了动态规划的思路 先把组合数存进数组 任何dp一定要注意各个状态来源不能有重复情况. 根据奇偶分两种情况 如果n是奇数则与n-1的情况相同,它只比前一个偶数多了一个1,并不能合成一个2的幂,所以是一样的. 如果n是偶数则还可以分为两种情况,有1和没有1.这样分可以保证两种情况没有重复) 举个栗子 8 有…
先来看一下经典的背包问题吧 http://www.cnblogs.com/Kalix/p/7617856.html  01背包问题 https://www.cnblogs.com/Kalix/p/7622102.html 完全背包问题 https://blog.csdn.net/mystery_guest/article/details/51878140      多重背包二进制优化 1.https://cn.vjudge.net/problem/12304/origin    POJ 3176…
上一篇我们已经说到了,增强学习的目的就是求解马尔可夫决策过程(MDP)的最优策略,使其在任意初始状态下,都能获得最大的Vπ值.(本文不考虑非马尔可夫环境和不完全可观测马尔可夫决策过程(POMDP)中的增强学习). 那么如何求解最优策略呢?基本的解法有三种: 动态规划法(dynamic programming methods) 蒙特卡罗方法(Monte Carlo methods) 时间差分法(temporal difference). 动态规划法是其中最基本的算法,也是理解后续算法的基础,因此本…
题目:House Robber You are a professional robber planning to rob houses along a street. Each house has a certain amount of money stashed, the only constraint stopping you from robbing each of them is that adjacent houses have security system connected a…
March 26, 2013 作者:Hawstein 出处:http://hawstein.com/posts/dp-novice-to-advanced.html 声明:本文采用以下协议进行授权: 自由转载-非商用-非衍生-保持署名|Creative Commons BY-NC-ND 3.0 ,转载请注明作者及出处. 前言 本文翻译自TopCoder上的一篇文章: Dynamic Programming: From novice to advanced ,并非严格逐字逐句翻译,其中加入了自己的…
转自:http://segmentfault.com/blog/exploring/ LCS 问题描述 定义: 一个数列 S,如果分别是两个或多个已知数列的子序列,且是所有符合此条件序列中最长的,则 S 称为已知序列的最长公共子序列. 例如:输入两个字符串 BDCABA 和 ABCBDAB,字符串 BCBA 和 BDAB 都是是它们的最长公共子序列,则输出它们的长度 4,并打印任意一个子序列. (Note: 不要求连续) 判断字符串相似度的方法之一 - LCS 最长公共子序列越长,越相似. Ju…
 //动态规划查找两个字符串最大子串         public static string lcs(string word1, string word2)         {             int max = 0;             int index = 0;             int[,] nums = new int[word1.Length + 1,word2.Length+1];             for (int i = 0; i <= word1.L…
//递归         public static long recurFib(int num)         {             if (num < 2)             {                 return num;             }             else             {                 return recurFib(num - 1) + recurFib(num - 2);             }   …
1. 问题描述 子串应该比较好理解,至于什么是子序列,这里给出一个例子:有两个母串 cnblogs belong 比如序列bo, bg, lg在母串cnblogs与belong中都出现过并且出现顺序与母串保持一致,我们将其称为公共子序列.最长公共子序列(Longest Common Subsequence, LCS),顾名思义,是指在所有的子序列中最长的那一个.子串是要求更严格的一种子序列,要求在母串中连续地出现.在上述例子的中,最长公共子序列为blog(cnblogs, belong),最长公…
[BZOJ1700][Usaco2007 Jan]Problem Solving 解题 Description 过去的日子里,农夫John的牛没有任何题目. 可是现在他们有题目,有很多的题目. 精确地说,他们有P (1 <= P <= 300) 道题目要做. 他们还离开了农场并且象普通人一样找到了工作. 他们的月薪是M (1 <= M <= 1000) 元. 他们的题目是一流的难题,所以他们得找帮手.帮手们不是免费的,但是他们能保证在一个月内作出任何题目.每做一道题需要两比付款,…
http://poj.org/problem?id=1163 The Triangle Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 32923   Accepted: 19514 Description 73 88 1 02 7 4 44 5 2 6 5 (Figure 1) Figure 1 shows a number triangle. Write a program that calculates the hi…
动态规划的解决方法是找到动态转移方程. 题目地址:http://acm.hdu.edu.cn/game/entry/problem/show.php?chapterid=3&sectionid=2&problemid=4 题目大意:找到一个最多的老鼠序列,使得序列中的老鼠的体重满足递增,相应老鼠的速度满足递 减.即可要求找出老鼠体重递增,速度递减的最长子序列(不需要连续). 思路:动态转移方程的确定,状态f[i]表示前i个老鼠中的最长递减子序列长度,状态转移方程为mouse[i].len…
今天以LIS问题切入动态规划,现在做一些简单的总结. LIS问题: http://www.cnblogs.com/Booble/archive/2010/11/27/1889482.html…
Description Input Output Sample Input - - Sample Output HINT Solution 斜率优化动态规划 首先易得出这样的一个朴素状态转移方程 f[i]=max{f[j]+cal(sum[i]-sum[j])} 其中j<i,且cal(x)=a*x*x+b*x+c 那么设转移方程中的式子为V 若i<j,且V(j)>V(i) 那么,f[j]-f[i]+a*sum[j]^2-a*sum[i]^2+b*(sum[i]-sum[j])>2*…
Description 农夫John准备扩大他的农场,他正在考虑N (1 <= N <= 50,000) 块长方形的土地. 每块土地的长宽满足(1 <= 宽 <= 1,000,000; 1 <= 长 <= 1,000,000). 每块土地的价格是它的面积,但FJ可以同时购买多快土地. 这些土地的价格是它们最大的长乘以它们最大的宽, 但是土地的长宽不能交换. 如果FJ买一块3x5的地和一块5x3的地,则他需要付5x5=25. FJ希望买下所有的土地,但是他发现分组来买这些…
传送门 Description Hasan and Bahosain want to buy a new video game, they want to share the expenses. Hasan has a set of N coins and Bahosain has a set of M coins. The video game costs W JDs. Find the number of ways in which they can pay exactly W JDs su…
面试题9.1:有个小孩正在上楼梯,楼梯有n个台阶,小孩一次可以上1阶.2阶或者3阶.实现一个方法,计算小孩有多少种上楼梯的方式. 思路:第4个数是前三个数之和 注意:能不能使用递归,能不能建立一个很大的数组来存储传递的参数(因为可能有空间的限制),要%1000000007防止超出范围 package cc150.recursion_dp; public class GoUpstairs { public static void main(String[] args) { // TODO 自动生成…
动态规划属于技巧性比较强的题目,如果看到过原题的话,对解题很有帮助 55. Jump Game Given an array of non-negative integers, you are initially positioned at the first index of the array. Each element in the array represents your maximum jump length at that position. Determine if you ar…
一.基本概念 动态规划过程是:每次决策依赖于当前状态,又随即引起状态的转移.一个决策序列就是在变化的状态中产生出来的,所以,这种多阶段最优化决策解决问题的过程就称为动态规划. 二.基本思想与策略 基本思想与分治法类似,也是将待求解的问题分解为若干个子问题(阶段),按顺序求解子阶段,前一子问题的解,为后一子问题的求解提供了有用的信息.在求解任一子问题时,列出各种可能的局部解,通过决策保留那些有可能达到最优的局部解,丢弃其他局部解.依次解决各子问题,最后一个子问题就是初始问题的解. 由于动态规划解决…
动态规划就是寻找最优解的过程 最重要的是找到关系式 hdu 1003 题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1003 题目大意:求最大字序列和,其实就是分成 以0结尾的序列 以1结尾的序列 以2结尾的序列 ... 以n结尾的序列 所以以n结尾的序列的最大值就是以n-1结尾的序列的最大值+n的值 或最大值是n的值 关系式: d[i]=max(d[i-1]+a[i],a[i]) d[i]为以i结尾的序列和的最大值,a[i]为第i个数的值 #in…
问题描述: 在股市的交易日中,假设最多可进行两次买卖(即买和卖的次数均小于等于2),规则是必须一笔成交后进行另一笔(即买-卖-买-卖的顺序进行).给出一天中的股票变化序列,请写一个程序计算一天可以获得的最大收益.请采用实践复杂度低的方法实现. 给定价格序列prices及它的长度n,请返回最大收益.保证长度小于等于500. class Solution { public: int maxProfit(vector<int>& prices) { //It's wrong if you c…
编辑距离概念描述 编辑距离,又称Levenshtein距离,是指两个字串之间,由一个转成另一个所需的最少编辑操作次数.一般情况下编辑操作包括: 将一个字符替换成另一个字符: 插入一个字符: 删除一个字符: 例如,将单词kitten转成单词sitting需要如下三个步骤: sitten (k→s) sittin (e→i) sitting (→g) 俄罗斯科学家Vladimir Levenshtein在1965年提出这个概念. 编辑距离的应用在信息检索.拼写纠错.机器翻译.命名实体抽取.同义词寻找…
•在用分治法解决问题时,由于子问题的数目往往是问题规模的指数函数,因此对时间的消耗太大. •动态规划的思想在于,如果各个子问题不是独立的,不同的子问题的个数只是多项式量级,而我们能够保存已经解决的子问题的答案,在需要的时候再找出已求得的答案,这样就可以避免大量的重复计算. 由此而来的基本思路是,用一个表记录所有已解决的子问题的答案,不管该问题以后是否被用到,只要它被计算过,就将其结果填入表中 斐波纳斯//哈哈 int F(int n, int a[N]) { ) ; ) ; a1=a[n-];…
唯一路径问题II Unique Paths II Follow up for "Unique Paths": Now consider if some obstacles are added to the grids. How many unique paths would there be? An obstacle and empty space is marked as 1 and 0 respectively in the grid. For example, There is…
动态规划在很多情况下可以降低代码的空间时间复杂度. 判断一道问题能否应用动态规划,需要关注问题是否具有最优子结构,当前规模的问题的解在之前问题的解里面,还要注意的是要满足无后效性的原则.随后就是寻找递归方程.通常使用一维数组,二维数组,甚至三维数组来存储不同规模问题的解,一些情况下也可以使用 O(1) 的空间来存储解,具体要视递归方程而定.以leetcode几个问题为例. leetcode 53. Maximum Subarray Find the contiguous subarray wit…
Traveling Salesman Problem Description: Time Limit: 4sec    Memory Limit:256MB 有编号1到N的N个城市,问从1号城市出发,遍历完所有的城市并最后停留在N号城市的最短路径长度. Input: 第一行整数 T :T组数据 (T<=20) 每个case 读入一个N( 2 <= N <= 20),接着输入N行,第i行有两个整数 xi , yi 表示第 i 个城市坐标轴上的坐标 . Output: 每个case输出一个浮…
再学习一下动态规划的基本优化方法- 首先这篇文章应该大家都看过吧-没看过的自行百度 关于实现的思路文章里都给好了-这篇就主要给一点题目啥的 (P.S. 电脑重装了,如果博客发出来有一些奇怪的问题不要在意) 模型一,即决策单调性优化 ①玩具装箱 bzoj1010 题目自己看去 用dp[x]表示装前x个的最小费用,sum[x]表示C的前缀和. 可以发现dp[i]=min{dp[j]+(i-j+sum[i]-sum[j]-1-L)^2} (0<=j<i) 这样似乎还是不够美观,我们令p[i]=i+s…
http://blog.csdn.net/abcjennifer/article/details/7735272 自然语言处理(NLP)中,有一个基本问题就是求两个字符串的minimal Edit Distance, 也称Levenshtein distance.受到一篇Edit Distance介绍文章的启发,本文用动态规划求取了两个字符串之间的minimal Edit Distance. 动态规划方程将在下文进行讲解. 简单地说,就是仅通过插入(insert).删除(delete)和替换(s…
问题 B: [动态规划]简单背包问题II 时间限制: 1 Sec  内存限制: 64 MB提交: 21  解决: 14[提交][状态][讨论版] 题目描述 张琪曼:“为什么背包一定要完全装满呢?尽可能多装不就行了吗?” 李旭琳:“你说得对,这和墨老师曾告诉我们的‘日中则昃,月满则亏’是一个道理.”所以,现在的问题是,她们有一个背包容量为v(正整数,0≤v≤20000),同时有n个魔法石(0≤n≤30),每个魔法石有一个体积 (正整数).要求从n个魔法石中,任取若干个装入包内,使背包的剩余空间为最…