约数之和(POJ1845 Sumdiv)】的更多相关文章

最近应老延的要求再刷<算法进阶指南>(不得不说这本书不错)...这道题花费了较长时间~(当然也因为我太弱了)所以就写个比较易懂的题解啦~ 原题链接:POJ1845 翻译版题目(其实是AcWing上的): 假设现在有两个自然数A和B,S是AB的所有约数之和. 请你求出S mod 9901的值是多少. 输入格式 在一行中输入用空格隔开的两个整数A和B. 输出格式 输出一个整数,代表S mod 9901的值. 数据范围 0≤A,B≤5×107 输入样例: 2 3 输出样例: 15 注意: A和B不会…
POJ1845:http://poj.org/problem?id=1845 思路: AB可以表示成多个质数的幂相乘的形式:AB=(a1n1)*(a2n2)* ...*(amnm) 根据算数基本定理可以得约数之和sum=(1+a1+a12+...+a1n1)*(1+a2+a22+...+a2n2)*...*(1+am+am2+...+amnm) mod 9901 对于每个(1+ai+ai2+...+aini) mod 9901=(ai(ni+1)-1)/(ai-1) mod 9901 (等比数列…
poj1845 Sumdiv 数学题 令人痛苦van分的数学题! 题意:求a^b的所有约数(包括1和它本身)之和%9901 这怎么做呀!!! 百度:约数和定理,会发现 p1^a1 * p2^a2 * ... * pn^an这个数的约数和是:(1 + p1 + p1^2 + ... + p1^a1) * (1 + p2 + ... + p2^a2) * ... * (1 + pn + ... + pn^an) 证明:由乘法原理可直接证明 然后我们对于a^b运用这个公式即可.那么对于 (1 + pi…
题目链接 https://cn.vjudge.net/problem/POJ-1845 分析 \(POJ\)里的数学题总是这么妙啊 首先有一个结论就是\(A=\prod{ \ {p_i}^{c_i} \ }\),那么\(A\)所有约数之和为\((1+p_1+p_1^2+..+p_1^{c_1}) * (1+p_2+p_2^2+...+p_2^{c_2}) ... (1+p_n +p_n^2 +... + p_n^{c_n})\) 这个好像数学归纳法可证,但是感性理解一下也不难 于是这道题就是求\…
题目问$A^B$的所有因数和. 根据唯一分解定理将A进行因式分解可得:A = p1^a1 * p2^a2 * p3^a3 * pn^an.A^B=p1^(a1*B)*p2^(a2*B)*...*pn^(an*B);A^B的所有约数之和sum=[1+p1+p1^2+...+p1^(a1*B)]*[1+p2+p2^2+...+p2^(a2*B)]*[1+pn+pn^2+...+pn^(an*B)] 知道这个,问题就变成求出A的所有质因数pi以及个数n,然后$\prod(1+p_i+p_i^2+\cd…
1220 约数之和 题意:求\(\sum_{i=1}^n \sum_{j=1}^n \sigma_1(ij)​\) \[ \sigma_0(ij) = \sum_{x\mid i}\sum_{y\mid j}[(x,y)=1]\\ \sigma_1(ij) = \sum_{x\mid i}\sum_{y\mid j}x\cdot\frac{j}{y}[(x,y)=1] \\ \] 怎么证明第二个式子? \[ \sigma_1(n) = \prod_i(1 + p_i + p_i^2 + ...…
正解:小学数学数论 解题报告: 传送门! 其实不难但我数学这个方面太菜了所以还是多写点儿博客趴QAQ 然后因为是英文的所以先翻译一下,,,? 大概就是说求AB的所有约数之和,对9901取膜 这个只需要知道一个小学奥数知识点就欧克了? 就,对D质因数分解成D=w1p1*w2p2*w3p3*... 那D的约数的和就(w10+w11+...+w1p1)*... 然后就可以直接对A质因数分解,直接套上面这个式子只是上限变成了w1B*w1 然后就做完了,,,? 可能晚上放代码趴QAQ?…
[题目大意] 选取和不超过S的若干个不同的正整数,使得所有数的约数(不含它本身)之和最大. 输入一个正整数S. 输出最大的约数之和. 样例输入 Sample Input 11 样例输出 Sample Output 9 样例说明 取数字4和6,可以得到最大值(1+2)+(1+2+3)=9. 数据规模对于30%的数据,S≤10: 对于100%的数据,S≤1000. [思路] 水题,普通的01背包问题,唯一需要注意的一点是,1的所有约数之和是0!我一开始就因为1没有单独判断而导致了错误. #inclu…
当初写过一篇分治的 题意:求A^B的所有因子之和,并对其取模 9901再输出 对于数A=p1^c1+p2^c2+...+pn*cn,它的所有约数之和为(1+p1+p1^2+p1^3+...+p1^(c1*B))*(1+p2+p2^2+p2^3+...+p2^(c2*B))*...*(1+pn+pn^2+pn^3+...+pn^(cn*B)) 注意到约数之和的每一项都是等比数列,可以用通项搞他,先用快速幂计算分子,再求出分母的乘法逆元. 特别地,当分母pi-1为9901的倍数时,乘法逆元不存在,但…
                          1220 约数之和                                  题目来源: Project Euler 基准时间限制:3 秒 空间限制:131072 KB 分值: 640 难度:8级算法题   Discription d(k)表示k的所有约数的和.d(6) = 1 + 2 + 3 + 6 = 12. 定义S(N) = ∑1<=i<=N ∑1<=j<=N d(i*j). 例如:S(3) = d(1) + d(2…