题意: 给一个无向图,保证任意两个点之间有两条完全不相同的路径 求至少加多少边才能实现 题解: 得先学会一波tarjan无向图 桥的定义是:删除这条边之后该图不联通 一条无向边(u,v)是桥,当且仅当(u,v)为树枝边,且满足 DFN(u)<Low(v).(因为 v 想要到达 u 的父亲必须经过(u,v)这条边,所以删去这条边,图不连通) 先用Tarjan无向图缩边双联通分量,这样原图就构成了一颗树, 对于树的叶子节点来说,显然他们需要连边,可以证明的是,我们连至多(叶子节点个数+1)/2的边就…