题目链接 https://www.luogu.org/problemnew/show/P1045 题目大意 本题目的主要意思就是给定一个p,求2p-1的位数和后500位数. 解题思路 首先看一下数据范围,我们不难发现此题必须要用高精度来做.但是每一次高精度乘法的复杂度是o(n)的(n为数字的位数),所以很显然需要加一个快速幂.但是事实证明快速幂+高精度也会超时,所以我们必须进一步优化时间. 根据题意,我们可知,只需要记录下后500位数即可,这里牵扯到一点点数论的知识,这一个数字的后500位是与5…
题目描述 形如2^P−1的素数称为麦森数,这时P一定也是个素数.但反过来不一定,即如果P是个素数,2^P−1不一定也是素数. 到1998年底,人们已找到了37个麦森数.最大的一个是P=3021377,它有909526位.麦森数有许多重要应用,它与完全数密切相关. 任务:从文件中输入P(1000<P<3100000),计算2^P−1的位数和最后500位数字(用十进制高精度数表示) 输入格式 文件中只包含一个整数P(1000<P<3100000) 输出格式 第一行:十进制高精度数2^P…
[NOIP2003普及组]麦森数(快速幂+高精度) Description 形如2^P-1的素数称为麦森数,这时P一定也是个素数.但反过来不一定,即如果P是个素数,2^P-1不一定也是素数.到1998年底,人们已找到了37个麦森数.最大的一个是P=3021377,它有909526位.麦森数有许多重要应用,它与完全数密切相关.任务:从文件中输入P(1000 < P < 3100000),计算2^P-1的位数和最后500位数字(用十进制高精度数表示) Input 只包含一个整数P(1000 <…
来源:http://vivid.name/tech/mason.html 不得不纪念一下这道题,因为我今天一整天的时间都花到这道题上了.因为这道题,我学会了快速幂,学会了高精度乘高精度,学会了静态查错,学会了一个小小的变量的使用可能会导致整个程序挂掉.. Description 形如2^P-1的素数称为麦森数,这时P一定也是个素数.但反过来不一定,即如果P是个素数,2^P-1不一定也是素数.到1998年底,人们已找到了37个麦森数.最大的一个是P=3021377,它有909526位.麦森数有许多…
洛谷P1048 [NOIP2005 普及组] 采药 洛谷的一个谱架-的题目,考的是01背包问题,接下来分享一下我的题解代码. AC通过图: 我的代码: 1 //动态规划 洛谷P1048 [NOIP2005 普及组] 采药 2 #include<iostream> 3 #include<cmath> 4 using namespace std; 5 int value[105];//价值数组 6 int times[105];//时间数组 7 long long dp[1000];…
先给出例题:P1020 [NOIP1999 普及组] 导弹拦截 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn) 大佬题解:P1020 [NOIP1999 普及组] 导弹拦截 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn)第一个就是 如果是求最长子序列长度,一般可以用dp,时间复杂度O(n^2),使用树状数组优化后,时间复杂度O(nlogn),在这里就先不讨论了. 在STL里有lower_bound和upper_bound两个函数,都是以二分为原理在有序序列中查…
P1077 摆花 题目描述 小明的花店新开张,为了吸引顾客,他想在花店的门口摆上一排花,共m盆.通过调查顾客的喜好,小明列出了顾客最喜欢的n种花,从1到n标号.为了在门口展出更多种花,规定第i种花不能超过ai盆,摆花时同一种花放在一起,且不同种类的花需按标号的从小到大的顺序依次摆列. 试编程计算,一共有多少种不同的摆花方案. 输入输出格式 输入格式: 第一行包含两个正整数n和m,中间用一个空格隔开. 第二行有n个整数,每两个整数之间用一个空格隔开,依次表示a1.a2.……an. 输出格式: 输出…
题目描述 试计算在区间 11 到 nn的所有整数中,数字x(0 ≤ x ≤ 9)x(0≤x≤9)共出现了多少次?例如,在 11到1111中,即在 1,2,3,4,5,6,7,8,9,10,111,2,3,4,5,6,7,8,9,10,11 中,数字 11 出现了 44 次. 输入格式 2个整数n,xn,x,之间用一个空格隔开. 输出格式 1个整数,表示xx出现的次数. 输入输出样例 输入 #1 11 1 输出 #1 4 思路 循环1-n所有数,依次找到这些数中的x出现的次数 C++代码 /* *…
[题解] 一道简单的模拟题.需要判一些特殊情况:第一项的正号不用输出,x的一次项不用输出指数,系数为0的项不用输出等等,稍微细心一下就好. #include<cstdio> #include<cstring> #include<algorithm> #define LL long long #define rg register #define N 200010 using namespace std; int n,m,a[N]; bool last; inline i…
首先题面是这样的: 给定一个正整数 k(3≤k≤15) ,把所有k的方幂及所有有限个互不相等的k的方幂之和构成一个递增的序列,例如,当 k=3 时,这个序列是: 1,3,4,9,10,12,13,- 因为所有的底数k都是相同的,所以自然要想到把他们的指数分离出来~~. 例如这样 然后把指数分离出来: 0,1,0+1,2,0+2,1+2,0+1+2,3.... 这时候看可能没什么头绪,但是再看一遍题目,你会发现题目中强调了两个字qwq------- 递增.也就是说我们在确定第n项时,要从之前确定的…