试证明: 一维理想流体力学方程组的 Lagrange 形式 (5. 22)-(5. 24) 也可写成如下形式 $$\beex \bea \cfrac{\p \tau}{\p t}-\cfrac{\p u}{\p x}&=0,\\ \cfrac{\p u}{\p t}+\cfrac{\p p}{\p x}&=F,\\ \cfrac{\p }{\p t}\sex{e+\cfrac{u^2}{2}} +\cfrac{\p}{\p x}(pu)&=Fu. \eea \eeex$$ 证明:…
证明: Euler 坐标系下的一维反应流体力学方程组 (3. 10)-(3. 13) 也是一个一阶拟线性双曲型方程组. 证明: 由 (3. 10), (3. 12), (3. 13) 知 $$\bex \cfrac{1}{\rho c^2}\cfrac{\p p}{\p t} +\cfrac{u}{\rho c^2}\cfrac{\p p}{\p x}+\cfrac{\p u}{\p x}=0.  \eex$$ 令 $U=(p,u,S,Z)^T$, 则 (3. 10)-(3. 13) 可化为 $…
试将一维理想磁流体力学方程组 (5. 10)-(5. 16) 化为一阶拟线性对称双曲组的形式. 解答: 由 (5. 12),(5. 16) 知 $$\beex \bea 0&=\cfrac{\p p}{\p \rho}\sex{\cfrac{\p \rho}{\p t}+u_1\cfrac{\p \rho}{\p x}+\rho \cfrac{\p u_1}{\p x}} +\cfrac{\p\rho}{\p S}\sex{\cfrac{\p S}{\p t}+u_1\cfrac{\p S}{\…
写出在忽略粘性与热传导性, 即设 $\mu=\mu'=\kappa=0$ 的情况, 在 Euler 坐标系下具守恒律形式的一维反应流动力学方程组. 由此求出在解的强间断线上应满足的 R.H. 条件 (见第二章 $\S 4$), 并证明越过强间断线, 函数 $Z$ 保持连续. 解答: (1)  具守恒律形式的一维反应流动力学方程组为 $$\beex \bea \cfrac{\p \rho}{\p t}+\cfrac{\p}{\p x}(\rho u)&=0,\\ \cfrac{\p}{\p t}(…
1.  一维理想流体力学方程组 $$\beex \bea \cfrac{\p\rho}{\p t}+\cfrac{\p}{\p x}(\rho u)&=0,\\ \cfrac{\p}{\p t}(\rho u) +\cfrac{\p}{\p x}(\rho u^2+p)&=\rho F,\\ \cfrac{\p}{\p t}\sex{\rho e+\cfrac{1}{2}\rho u^2} +\cfrac{\p}{\p x}\sez{\sex{ \rho e+\cfrac{1}{2}\rh…
1.  局部音速 $c$: $c^2=\cfrac{\p p}{\p \rho}>0$. 2.  将理想流体力学方程组 $$\beex \bea \rho\cfrac{\p {\bf u}}{\p t} +(\rho {\bf u}\cdot\n){\bf u}+\n p&=\rho{\bf F},\\ \cfrac{1}{\rho c^2}\cfrac{\p p}{\p t} +\n\cdot{\bf u}+\cfrac{1}{\rho c^2}({\bf u}\cdot\n)p&…
1.  质量守恒定律: 连续性方程 $$\bee\label{2_1_2_zl} \cfrac{\p\rho}{\p t}+\Div(\rho{\bf u})=0.  \eee$$ 2.  动量守恒定律: $$\bee\label{2_1_2_dl} \cfrac{\p}{\p t}(\rho{\bf u})+\Div(\rho{\bf u}\otimes {\bf u}+p{\bf I})=\rho{\bf F}. \eee$$ 用 \eqref{2_1_2_zl} 可化简 \eqref{2_…
1.  理想流体: 指忽略粘性及热传导的流体. 2.  流体的状态 (运动状态及热力学状态) 的描述 (1)   速度向量 $\bbu=(u_1,u_2,u_3)$: 流体微元的宏观运动速度. (2)   质量密度 $\rho$: 单位体积流体的质量. a.  质量流向量 (动量密度向量) $\rho\bbu$; b.  动量流张量 $\rho \bbu\otimes \bbu$; c.  比容 $\tau=\cfrac{1}{\rho}$: 单位质量流体的体积. (3)   压强 $p$: 作…
证明函数 $$\bex \hat W({\bf F})=\sedd{\ba{ll} \cfrac{1}{\det{\bf F}},&if\ \det{\bf F}>0,\\ +\infty,&if\ \det{\bf F}\leq 0 \ea} \eex$$ 是多凸的. 证明: 由 $$\bex f(x)=\cfrac{1}{x}\ra f'(x)=\cfrac{-1}{x^2}\ra f''(x)=\cfrac{2}{x^3} \eex$$ 知 $$\bex \cfrac{\rd…
在自由电磁场的情况, 证明: 在保持 Lorentz 条件下的规范变换下, 可使标势恒为零. 证明: 取 $\psi$ 满足 $\cfrac{\p \psi}{\p t}=\phi$ 且 $\cfrac{1}{c^2}\cfrac{\p^2\psi}{\p t^2}-\lap\psi=0$, 则在规范变换 (6. 14)-(6. 15) 下标势 $\phi'=\phi-\cfrac{\p\psi}{\p t}=0$, 且满足 Lorentz 条件 $$\bex \Div{\bf A}'+\cfr…