简洁的BP及RBF神经网络代码】的更多相关文章

BP神经网络 function [W,err]=BPTrain(data,label,hiddenlayers,nodes,type) %Train the bp artial nueral net work %input data,label,layers,nodes,type %data:dim*n %label:1*n %layers:m:number of hidden layers %nodes:num_1;num_2...num_m %type==1:create and train…
RBF神经网络 RBF神经网络通常只有三层,即输入层.中间层和输出层.其中中间层主要计算输入x和样本矢量c(记忆样本)之间的欧式距离的Radial Basis Function (RBF)的值,输出层对其做一个线性的组合. 径向基函数: RBF神经网络的训练可以分为两个阶段:第一阶段为无监督学习,从样本数据中选择记忆样本/中心点:可以使用聚类算法,也可以选择随机给定的方式. 第二阶段为监督学习,主要计算样本经过RBF转换后,和输出之间的关系/权重:可以使用BP算法计算.也可以使用简单的数学公式计…
作者:李瞬生链接:https://www.zhihu.com/question/44328472/answer/128973724来源:知乎著作权归作者所有.商业转载请联系作者获得授权,非商业转载请注明出处. BP Neural Network - 使用 Automatic Differentiation (Backpropagation) 进行导数计算的层级图模型 (layer-by-layer graphical model) 只要模型是一层一层的,并使用AD/BP算法,就能称作 BP Ne…
对于RBF神经网络的原理已经在我的博文<机器学习之径向基神经网络(RBF NN)>中介绍过,这里不再重复.今天要介绍的是常用的RBF神经网络学习算法及RBF神经网络与多层感知器网络的对比. 一.RBF神经网络学习算法 广义的RBF神经网络结构如下图所示: N-M-L结构对应着N维输入,M个数据中心点centers,L个输出. RBF 网络常用学习算法 RBF 网络的设计包括结构设计和参数设计.结构设计主要解决如何确定网络隐节点数的问题.参数设计一般需考虑包括3种参数:各基函数的数据中心和扩展常…
径向基神经网络 1.径向基函数 (Radial Basis Function,RBF) 神经网络是一种性能良好的前向网络,具有最佳逼近.训练简洁.学习收敛速度快以及克服局部最小值问题的性能,目前已经证明径向基网络能够以任意精度逼近任意连续的函数.因此它已经被广泛应用于模式识别.非线性控制和图像处理等领域. 2.RBF神经网络的结构--RBF 神经网络的基本思想是用径向基函数(RBF)作为隐单元,的“基” ,构成隐含层的空间,隐含层对输入矢量进行变换,将低维的模式输入数据转换到高位空间内,使得在低…
在这篇文章中,会实现一个BP(backpropagation)算法,并将之应用到手写的阿拉伯数字(0-9)的自动识别上. 训练数据集(training set)如下:一共有5000个训练实例(training instance),每个训练实例是一个400维特征的列向量(20*20 pixel image).用 X 矩阵表示整个训练集,则 X 是一个 5000*400 (5000行 400列)的矩阵 另外,还有一个5000*1的列向量 y ,用来标记训练数据集的结果.比如,第一个训练实例对应的输出…
Deeplearning Algorithms tutorial 谷歌的人工智能位于全球前列,在图像识别.语音识别.无人驾驶等技术上都已经落地.而百度实质意义上扛起了国内的人工智能的大旗,覆盖无人驾驶.智能助手.图像识别等许多层面.苹果业已开始全面拥抱机器学习,新产品进军家庭智能音箱并打造工作站级别Mac.另外,腾讯的深度学习平台Mariana已支持了微信语音识别的语音输入法.语音开放平台.长按语音消息转文本等产品,在微信图像识别中开始应用.全球前十大科技公司全部发力人工智能理论研究和应用的实现…
故障诊断主要包括三部分: 1.故障信号检测方法(定子电流信号检测 [ 定子电流幅值和电流频谱 ] ,振动信号检测,温度信号检测,磁通检测法,绝缘检测法,噪声检测法) 2.故障信号的处理方法,即故障特征提取(FFT,Hilbert 变换,小波变换,Hilbert-Huang变换). 3.故障识别技术 基于解析模型法(建立良好的电机模型并对隔状态参数进行估计,需要较好的专业知识) 基于人工智能法(基于专家系统:建立对比数据库:基于神经网络来做故障分类和识别:基于SVM,可处理分类时实现现有样本的最优…
  RBF神经网络通用函数 newrb, newrbe 1.newrb 其中P为输入向量,T为输出向量,GOAL为均方误差的目标,SPREED为径向基的扩展速度.返回值是一个构建好的网络,用newrb()创建的RBF网络是一个不断尝试的过程,在创建中不断的增加中间层的数量和神经元的数目,直到满足输出的误差为止. MN为最大的神经元个数,即神经元个数到了MN后立即停止网络训练,DF是每次加进来的网络参数,只是输出的时候用,如下所示: net=newrb(p,tt,err_goal,3,200,1)…
close allclear allclcload x.txt; load y.txt; inputs = x';targets = y; % 创建一个模式识别网络(两层BP网络),同时给出中间层神经元的个数,这里使用20hiddenLayerSize = 20;net = patternnet(hiddenLayerSize); % 对数据进行预处理,这里使用了归一化函数(一般不用修改)% For a list of all processing functions type: help nn…