算数学期望,每个人都可以分开来考虑.Xi表示第i个人跑到另外一边的次数. Xi服从二项分布.概率的和是个二项式,(p+1-p)^T,把二项式展开,p的偶次项是留在原来那一边的概率. 可以用((a+b)^T+(a-b)^T)/2来算出偶次项之和. 也可以用矩阵快速幂.矩阵构造如下 #include<cstdio> #include<iostream> #include<string> #include<cstring> #include<queue>…
平时有关线性递推的题,很多都可以利用矩阵乘法来解决. 时间复杂度一般是O(K3logn)因此对矩阵的规模限制比较大. 下面介绍一种利用利用Cayley-Hamilton theorem加速矩阵乘法的方法. Cayley-Hamilton theorem: 记矩阵A的特征多项式为f(x). 则有f(A)=0. 证明可以看 维基百科 https://en.wikipedia.org/wiki/Cayley–Hamilton_theorem#A_direct_algebraic_proof 另外我在高…
矩阵乘法,顾名思义矩阵与矩阵相乘, 两矩阵可相乘的前提:第一个矩阵的行与第二个矩阵的列相等 相乘原则: a b     *     A B   =   a*A+b*C  a*c+b*D c d      C D   =   c*A+d*C  c*A+d*C 上代码 struct matrix { ll a[maxn][maxn]; }; matrix matrix_mul(matrix x,matrix y) { matrix temp; ;i<=n;i++) ;j<=n;j++) { tem…
[Luogu4723]线性递推(常系数齐次线性递推) 题面 洛谷 题解 板子题QwQ,注意多项式除法那里每个多项式的系数,调了一天. #include<iostream> #include<cstdio> #include<cstring> #include<algorithm> using namespace std; #define MAX 200000 #define MOD 998244353 inline int read() { int x=0;…
[NOI2017]泳池 实在没有思路啊~~~ luogu题解 1.差分,转化成至多k的概率减去至多k-1的概率.这样就不用记录“有没有出现k”这个信息了 2.n是1e9,感觉要递推然后利用数列的加速技巧 f[n]表示宽度为n的值,然后枚举最后一个连续高度至少为1的块,dp数组辅助 神仙dp:dp[i][j]表示宽度为i,j的高度出现限制,任意矩形不大于k的概率 设计确实巧妙:宽度利于转移给f,高度利于自己的转移 dp数组转移:枚举第一个到达j的限制的位置,这样,前面部分限制至少是j+1,后面至少…
这里所有的内容都将有关于一个线性递推: $f_{n} = \sum\limits_{i = 1}^{k} a_{i} * f_{n - i}$,其中$f_{0}, f_{1}, ... , f_{k - 1}$是已知的. BM是用于求解线性递推式的工具,传入一个序列,会返回一个合法的线性递推式,一个$vector$,其中第$i$项表示上式的$a_{i + 1}$. CH用于快速求解常系数齐次线性递推的第$n$项,我们先会求出一个特征多项式$g$,$g$的第$k$项是$1$,其余项中第$k - i…
Description Solution 我们考虑将问题一步步拆解 第一步求出\(F_{S,i}\)表示一次旅行按位与的值为S,走了i步的方案数. 第二步答案是\(F_{S,i}\)的二维重复卷积,记答案为\(S_{S,i}\),那么\(F_{S,i}\times S_{T,j}\)能够贡献到\(S_{S\&T,i+j}\). 上下两部分是两个问题,我们分开来看. 考虑第一步 设原矩阵为A 根据定义,\[F_{S,i}=\sum\limits_{x\&y=T}A^i_{x,y}\] 容易看…
题意:给出,三个函数,h,b,a,然后T次询问,每次给出n,求sqrt(an); 思路:不会推,但是感觉a应该是线性的,这个时候我们就可以用BM线性递推,自己求出前几项,然后放到模板里,就可以求了. 数据范围在1e15,1000组都可以秒过. ( 那么主要的问题就是得确保是线性的,而且得求出前几项. 如果是K<1e6次多项式,我们可以用拉格朗日插值法求第N项,比如求K次方的前缀和,先放着,有空以启整理了. #include<bits/stdc++.h> using namespace s…
题意: 求sigma phi(n) 思路: 线性递推欧拉函数 (维护前缀和) //By SiriusRen #include <cstdio> using namespace std; #define maxn 1000005 #define int long long int n,p[maxn+100],s[maxn+100],phi[maxn+100],tot; void Phi(){ for(int i=2;i<=maxn;i++){ if(!s[i])p[++tot]=i,phi…
才发觉自己数学差的要死,而且脑子有点浑浑噩噩的,学了一个晚上才学会 如果说的有什么不对的可以在下面嘲讽曲明 以下无特殊说明时,默认方阵定义在实数域上,用\(|A|\)表示\(A\)的行列式 特征值与特征向量 对于一个\(n\)阶方阵\(A\),如果存在某个列向量\(v\)和\(\lambda\in R\),使得 \[ \begin{aligned} Av=\lambda v \end{aligned} \] 则我们称\(v\)为矩阵\(A\)的特征向量,\(\lambda\)为对应的特征值 不难…