首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
Storm概念学习系列之Task任务
】的更多相关文章
Storm概念学习系列之Task任务
不多说,直接上干货! 每一个Spout/Bolt的线程称为一个Task. Task任务 Task是运行Spout或Bolt的单元,每一个Spout/Bolt的线程称为一个Task. 在Storm 0.8及之后的版本中,Task不再与物理线程对应,同一个Spout/Bolt的Task可能会共享一个物理线程,该线程称为Executor. 实际的数据处理由Task完成,在Topology的生命周期中,每个组件的Task数量不会变化,而Executor的数量却不一定.在一般情况下,线程数小于等于Task…
Storm概念学习系列之核心概念(Tuple、Spout、Blot、Stream、Stream Grouping、Worker、Task、Executor、Topology)(博主推荐)
不多说,直接上干货! 以下都是非常重要的storm概念知识. (Tuple元组数据载体 .Spout数据源.Blot消息处理者.Stream消息流 和 Stream Grouping 消息流组.Worker工作者进程.Task是最终运行spout或bolt中代码的执行单元.executor是worker进程启动的一个单独线程) 见博客 Storm概念学习系列之storm核心组件 Storm概念学习系列之Task任务 Storm概念学习系列之Tuple元组 Storm概念学习系列之Blot消息处理…
Storm概念学习系列之Worker、Task、Executor三者之间的关系
不多说,直接上干货! Worker.Task.Executor三者之间的关系 Storm集群中的一个物理节点启动一个或者多个Worker进程,集群的Topology都是通过这些Worker进程运行的. 然而,Worker进程中又会运行一个或者多个Executor线程,每个Executor线程只运行一个Topology的一个组件(Spout或Bolt)的Task任务,Task又是数据处理的实体单元. Worker是进程,Executor对应于线程,Spout或Bolt是一个个的Task: 同一个W…
Storm概念学习系列之storm的雪崩
不多说,直接上干货! Storm的雪崩问题的解决办法1: Storm概念学习系列之并行度与如何提高storm的并行度 Storm的雪崩问题的解决办法2:…
Storm概念学习系列之storm流程图
把stream当做一列火车, tuple当做车厢,spout当做始发站,bolt当做是中间站点!!! 见 Storm概念学习系列之Spout数据源 Storm概念学习系列之Topology拓扑 Storm概念学习系列之Blot消息处理者 Storm概念学习系列之Tuple元组…
Storm概念学习系列之Stream消息流 和 Stream Grouping 消息流组
不多说,直接上干货! Stream消息流是Storm中最关键的抽象,是一个没有边界的Tuple序列. Stream Grouping 消息流组是用来定义一个流如何分配到Tuple到Bolt. Stream消息流和Stream Grouping消息流组 Storm核心的抽象概念是“流”.流是一个分布式并行创建和处理的无界的连续元组(Tuple).流通过给流元组中字段命名来定义.在默认情况下,元组可以包含整型.长整型.短整型.字节.字符串.双精度浮点数.单精度浮点数.布尔型和字节数组. Stream…
Storm概念学习系列之并行度与如何提高storm的并行度
不多说,直接上干货! 对于storm来说,并行度的概念非常重要!大家一定要好好理解和消化. storm的并行度,可以简单的理解为多线程. 如何提高storm的并行度? storm程序主要由spout和bolt组成的.spout和bolt在运行期间会生成task实例(new Spout或者new bolt). 那这些task实例是需要在线程(executor)里面运行的,而线程是需要在进程(worker)里面执行的. 这些,都是可以在代码中控制的到. 1.所以想要提高storm的处理能力,最直接的…
Storm概念学习系列 之数据流模型、Storm数据流模型
不多说,直接上干货! 数据流模型 数据流模型是由数据流.数据处理任务.数据节点.数据处理任务实例等构成的一种数据模型.本节将介绍的数据流模型如图1所示. 分布式流处理系统由多个数据处理节点(node)组成,每个数据处理节点上运行有多个数据任务实例,每个数据任务实例属于一个数据任务定义.任务实例是在任务定义的基础上,添加了输入流过滤条件和强制输出周期属性后,可实际推送到数据处理节点上运行的逻辑实体:数据任务定义包含输入数据流.数据处理逻辑和输出数据流属性. 数据流模型简介 首先介绍数据流模型中的一…
Storm概念学习系列之Topology拓扑
不多说,直接上干货! Hadoop 上运行的是 MapReduce 作业,而在 Storm 上运行的是拓扑 Topology,这两者之间是非常不同的.一个关键的区别是:一个MapReduce 作业最终会结束,而一个 Topology 拓扑会永远运行(除非手动杀掉). Topology拓扑 从字面上解释Topology,就是网络拓扑,是指用传输介质互连各种设备的物理布局,是构成网络的成员间特定的物理的(即真实的),或者逻辑的,即虚拟的排列方式.拓扑是一种不考虑物体的大小.形状等物理属性,而只使…
Storm概念学习系列之Spout数据源
不多说,直接上干货! Spout 数据源 消息源Spout是Storm的Topology中的消息生产者(即Tuple的创造者). Spout 介绍 1. Spout 的结构 Spout 是 Storm 的核心组件之一,最源头的接口是 IComponent,如图 1所示,几个Spout接口都继承自IComponent. 图 1 Spout 类图 2. Spout 发出的消息 Spout从外部获取数据后,向Topology中发出的Tuple可以是可靠的,也可以是不可靠的. 注意:一个可靠的消息…