CUDA并行存储模型】的更多相关文章

CUDA并行存储模型 CUDA将CPU作为主机(Host),GPU作为设备(Device).一个系统中可以有一个主机和多个设备.CPU负责逻辑性强的事务处理和串行计算,GPU专注于执行高度线程化的并行处理任务.它们拥有相互独立的存储器(主机端的内存和显卡端的显存). 运行在GPU上的函数称为kernel(内核函数).一个完整的CUDA程序是由一些列的kernel函数和主机端的串行处理步骤共同完成的.CPU串行代码的工作包括在kernel启动前进行的数据准备.设备初始化以及在kernel之间进行一…
CUDA将CPU作为主机(Host),GPU作为设备(Device).一个系统中可以有一个主机和多个设备.CPU负责逻辑性强的事务处理和串行计算,GPU专注于执行高度线程化的并行处理任务.它们拥有相互独立的存储器(主机端的内存和显卡端的显存). 运行在GPU上的函数称为kernel(内核函数).一个完整的CUDA程序是由一些列的kernel函数和主机端的串行处理步骤共同完成的.CPU串行代码的工作包括在kernel启动前进行的数据准备.设备初始化以及在kernel之间进行一些串行化计算. ker…
CUDA C++程序设计模型 本章介绍了CUDA编程模型背后的主要概念,概述了它们在C++中的暴露方式.在编程接口中给出了CUDA C++的广泛描述. 使用的矢量加法示例的完整代码可以在矢量加法CUDA示例中找到. 一. 内核 CUDA C++通过允许程序员定义C++函数,称为内核,扩展了C++,当调用时,用n个不同的CUDA线程并行执行n次,而不是像常规C++函数那样只执行一次. 一个内核使用了__global__声明说明符来定义,并且使用一个新的<<<->执行配置语法(参见C+…
剖析Elasticsearch集群系列涵盖了当今最流行的分布式搜索引擎Elasticsearch的底层架构和原型实例. 本文是这个系列的第一篇,在本文中,我们将讨论的Elasticsearch的底层存储模型及CRUD(创建.读取.更新和删除)操作的工作原理. Elasticsearch是当今最流行的分布式搜索引擎,GitHub. SalesforceIQ.Netflix等公司将其用于全文检索和分析应用.在Insight,我们用到了Elasticsearch的诸多不同功能,比如: 全文检索 比如找…
传统的串行处理方式 有四组文本数据: "the weather is good", "today is good", "good weather is good", "today has good weather" 对这些文本数据进行词频统计: import java.util.Hashtable; import java.util.Iterator; import java.util.StringTokenizer; /**…
分布式并行编程用于解决大规模数据的高效处理问题.分布式程序运行在大规模计算机集群上,集群中计算机并行执行大规模数据处理任务,从而获得海量计算能力. MapReduce是一种并行编程模型,用于大规模数据集的并行运算,那么MapReduce又是如何进行并行编程的呢? MapReduce采用“分而治之”的策略,将存储在分布式文件系统的大数据集切分成独立小数据块(即Split,分片),这些分片可以被多个Map任务并行处理.MapReduce强调“计算向数据靠拢”而非“数据向计算靠拢”,传统模式下,对数据…
转载:http://www.infoq.com/cn/articles/analysis-of-elasticsearch-cluster-part01 1.辨析Elasticsearch的索引与Lucene的索引 Elasticsearch中的索引是组织数据的逻辑空间(就好比数据库).1个Elasticsearch的索引有1个或者多个分片(默认是5个).分片对应实际存储数据的Lucene的索引,分片自身就是一个搜索引擎.每个分片有0或者多个副本(默认是1个).Elasticsearch的索引还…
http://www.cnblogs.com/5long/p/cuda-parallel-programming-1.html 本系列目录: [CUDA并行程序设计系列(1)]GPU技术简介 [CUDA并行程序设计系列(2)]CUDA简介及CUDA初步编程 [CUDA并行程序设计系列(3)]CUDA线程模型 [CUDA并行程序设计系列(4)]CUDA内存 [CUDA并行程序设计系列(5)]CUDA原子操作与同步 [CUDA并行程序设计系列(6)]CUDA流与多GPU 关于CUDA的一些学习资料…
<CUDA并行程序设计:GPU编程指南> 基本信息 原书名:CUDA Programming:A Developer’s Guide to Parallel Computing with GPUs 作者: (美)Shane Cook 译者: 苏统华 李东 李松泽 魏通 丛书名: 高性能计算系列丛书 出版社:机械工业出版社 ISBN:9787111448617 上架时间:2014-1-10 出版日期:2014 年1月 开本:16开 页码:1 版次:1-1 所属分类:计算机 更多关于>>…
概述 Java存储模型(JMM),安全发布.规约,同步策略等等的安全性得益于JMM,在你理解了为什么这些机制会如此工作后,可以更容易有效地使用它们. 1. 什么是存储模型,要它何用. 如果缺少同步,就会有很多因素会导致线程无法立即,甚至永远无法看到另一个线程的操作所产生的结果: 编译器生成指令的次序,可以不同于源代码书写的顺序,而且编译器还会把变量存储在寄存器,而不是内存中. 处理器可以乱序或者并行地执行指令. 缓存会改变写入提交到主内存的变量的次序. 存储在处理器本地缓存中的值,对于其他处理器…