之前关于二重积分的笔记,介绍了二重积分概念的引入,但是对于它的计算方法(化为累次积分),介绍的较为模糊,它在<概率论基础教程>中一系列的推导中发挥着很重要的作用. 回想先前关于二重积分的几何含义,求解一个曲顶圆柱的体积,我们用如下的符号进行定义: 现在我们通过另外一条路径,再次得到几何体的体积,便可以建立等式,那么对于一般的二重积分,我们就找到了计算方法. 看这样一个图: 落在x-O-y上的面积就是被积区域D,几何体的顶部z=f(x,y)就是被积函数,为了求解这个几何体的体积,我们采取先求侧面…