spark streaming 2: DStream】的更多相关文章

一.基于Receiver的方式 1.概述 基于Receiver的方式: Receiver是使用Kafka的高层次Consumer API来实现的.receiver从Kafka中获取的数据都是存储在Spark Executor的内存中的, 然后Spark Streaming启动的job会去处理那些数据. 然而,在默认的配置下,这种方式可能会因为底层的失败而丢失数据.如果要启用高可靠机制,让数据零丢失,就必须启用Spark Streaming的 预写日志机制(Write Ahead Log,WAL)…
DStream是类似于RDD概念,是对数据的抽象封装.它是一序列的RDD,事实上,它大部分的操作都是对RDD支持的操作的封装,不同的是,每次DStream都要遍历它内部所有的RDD执行这些操作.它可以由StreamingContext通过流数据产生或者其他DStream使用map方法产生(与RDD一样) time属性对DStream而言非常重要,DStream里面的RDD就是通过某个时间间隔产生的,而且以产生的时间为索引.所以在访问DStream的某个RDD时,实际上是访问它在某个时间点的RDD…
[注]该系列文章以及使用到安装包/测试数据 可以在<倾情大奉送--Spark入门实战系列>获取 .Spark Streaming简介 1.1 概述 Spark Streaming 是Spark核心API的一个扩展,可以实现高吞吐量的.具备容错机制的实时流数据的处理.支持从多种数据源获取数据,包括Kafk.Flume.Twitter.ZeroMQ.Kinesis 以及TCP sockets,从数据源获取数据之后,可以使用诸如map.reduce.join和window等高级函数进行复杂算法的处理…
Spark Streaming Spark Streaming 是Spark为了用户实现流式计算的模型. 数据源包括Kafka,Flume,HDFS等. DStream 离散化流(discretized stream), Spark Streaming 使用DStream作为抽象表示.是随时间推移而收到的数据的序列.DStream内部的数据都是RDD形式存储, DStream是由这些RDD所组成的离散序列. 编写Streaming步骤: 1.创建StreamingContext // Creat…
一.简介 许多应用需要即时处理收到的数据,例如用来实时追踪页面访问统计的应用.训练机器学习模型的应用,还有自动检测异常的应用.Spark Streaming 是 Spark 为这些应用而设计的模型.它允许用户使用一套和批处理非常接近的 API 来编写流式计算应用,这样就可以大量重用批处理应用的技术甚至代码. 和 Spark 基于 RDD 的概念很相似,Spark Streaming 使用离散化流(discretized stream)作为抽象表示,叫作 DStream.DStream 是随时间推…
一.基于 Spark 做 Spark Streaming 的思路 Spark Streaming 与 Spark Core 的关系可以用下面的经典部件图来表述: 在本节,我们先探讨一下基于 Spark Core 的 RDD API,如何对 streaming data 进行处理.理解下面描述的这个思路非常重要,因为基于这个思路详细展开后,就能够充分理解整个 Spark Streaming 的模块划分和代码逻辑. 第一步,假设我们有一小块数据,那么通过 RDD API,我们能够构造出一个进行数据处…
Spark入门实战系列--7.Spark Streaming(上)--实时流计算Spark Streaming原理介绍 http://www.cnblogs.com/shishanyuan/p/4747735.html 1.Spark Streaming简介 1.1 概述 Spark Streaming 是Spark核心API的一个扩展,可以实现高吞吐量的.具备容错机制的实时流数据的处理.支持从多种数据源获取数据,包括Kafk.Flume.Twitter.ZeroMQ.Kinesis 以及TCP…
1.Spark Streaming简介 官方网站解释:http://spark.apache.org/docs/latest/streaming-programming-guide.html 该博客转载于:http://www.cnblogs.com/shishanyuan/p/4747735.html 1.1 概述 Spark Streaming 是Spark核心API的一个扩展,可以实现高吞吐量的.具备容错机制的实时流数据的处理.支持从多种数据源获取数据,包括Kafk.Flume.Twitt…
1.Spark Streaming简介 1.1 概述 Spark Streaming 是Spark核心API的一个扩展,可以实现高吞吐量的.具备容错机制的实时流数据的处理.支持从多种数据源获取数据,包括Kafka.Flume.Twitter.ZeroMQ.Kinesis 以及TCP sockets,从数据源获取数据之后,可以使用诸如map.reduce.join和window等高级函数进行复杂算法的处理.最后还可以将处理结果存储到文件系统,数据库和实时仪表盘.在“One Stack rule t…
提到Spark Streaming,我们不得不说一下BDAS(Berkeley Data Analytics Stack),这个伯克利大学提出的关于数据分析的软件栈.从它的视角来看,目前的大数据处理可以分为如以下三个类型. 复杂的批量数据处理(batch data processing),通常的时间跨度在数十分钟到数小时之间. 基于历史数据的交互式查询(interactive query),通常的时间跨度在数十秒到数分钟之间. 基于实时数据流的数据处理(streaming data proces…