PCA 最大方差理论的直观解释】的更多相关文章

PCA 这个名字看起来比较玄乎,其实就是给数据换一个坐标系,然后非常生硬地去掉一些方差很小的坐标轴. 例:三维空间中,有一些数据只分布在一个平面上,我们通过"坐标系旋转变换",使得数据所在的平面与 \(x\),\(y\) 平面重合,那么我们就可以用 \(x'\),\(y'\) 两个维度表达原始数据,并且没有任何损失. 在低维的空间中,我们可以用几何直观来解释:同样的数据,用不同的坐标系表示. 在高维的空间中,我们就得通过代数的方法来依次寻找这些坐标轴方向,第 1 坐标轴方向就是第一主成…
算法基础:BFS和DFS的直观解释 https://cuijiahua.com/blog/2018/01/alogrithm_10.html 一.前言 我们首次接触 BFS 和 DFS 时,应该是在数据结构课上讲的 “图的遍历”.还有就是刷题的时候,遍历二叉树我们会经常用到BFS和DFS.它们的实现都很简单,这里我就不哆嗦去贴代码了. 想看代码的可以看<剑指Offer(三十八):二叉树的深度>这个题目就可以利用BFS和DFS进行求解.那么,这两者“遍历” 的序列到底有何差别? 本篇文章就单纯来…
PCA PCA(Principal Component Analysis,主成分分析)是一种常用的数据分析方法.PCA通过线性变换将原始数据变换为一组各维度线性无关的表示,可用于提取数据的主要特征分量,常用于高维数据的降维.网上关于PCA的文章有很多,但是大多数只描述了PCA的分析过程,而没有讲述其中的原理.这篇文章的目的是介绍PCA的基本数学原理,帮助读者了解PCA的工作机制是什么. 当然我并不打算把文章写成纯数学文章,而是希望用直观和易懂的方式叙述PCA的数学原理,所以整个文章不会引入严格的…
PCA算法另外一种理解角度是:最小化点到投影后点的距离平方和. 假设我们有m个样本点,且都位于n维空间 中,而我们要把原n维空间中的样本点投影到k维子空间W中去(k<n),并使得这m个点到投影点的距离(即投影误差)的平方和最小.我们假设投影到的k维子空间的标准正交基(orthonormal basis)为 ,这组标准正交基组成了一个的矩阵U: 则称为子空间W 的投影矩阵(projection matrix). 如果我们不从标准正交基出发,如何求得W的投影矩阵?设是W 的任意一组基,形成一个的矩阵…
一篇非常精彩的解释CAP理论的文章,翻译水平有限,不准确之处请参考原文,还请见谅. Chapter 1: "Remembrance Inc" Your new venture : Last night when your spouse appreciated you on remembering her birthday and bringing her a gift, a strange Idea strikes you. People are so bad in rememberi…
一篇非常精彩的解释CAP理论的文章,翻译水平有限,不准确之处请参考原文,还请见谅. Chapter 1: “Remembrance Inc” Your new venture : Last night when your spouse appreciated you on remembering her birthday and bringing her a gift, a strange Idea strikes you. People are so bad in remembering th…
常见的激活函数有sigmoid.tanh和relu三种非线性函数,其数学表达式分别为: sigmoid: y = 1/(1 + e-x) tanh: y = (ex - e-x)/(ex + e-x) relu: y = max(0, x) 其代码实现如下: import numpy as np import matplotlib.pyplot as plt def sigmoid(x): return 1 / (1 + np.exp(-x)) def tanh(x): return (np.e…
系统论里面总是有一些通用的专业术语 比如复杂度.熵.焓,复杂度专门独立出来,成为复杂度理论 文章摘抄于:<非线性动力学> 刘秉政 编著  5.5 复杂性及其测度 热力学的几个专业术语 熵.焓.自由能.吉布斯自由能.复杂度 熵:体系混乱度(或无序度)的量度.S表示熵.也表示黑洞中不可用热量与其温度的比值.对于化学反应而言,若反应物和产物都处于标准状态下,则反应过程的熵变,即为该反应的标准熵变. 焓(hán)变(Enthalpy changes)即物体焓的变化量.[1]焓是物体的一个热力学能状态函…
Sigmoid function也叫Logistic function, 在logistic regression中扮演将回归估计值h(x)从 [-inf, inf]映射到[0,1]的角色. 公式为:g(z) = 1 / (1 + exp(-z)) 如图: 其输出值大于0.5这认为待分类对象属于1,否则则属于0. 这个值得直观意义便是结果预测正确的概率. 例如:当sigmoid(h(x)) = 0.7时,表示特征为x的对象属于1的概率为0.7,为0的概率为0.3.…
https://blog.csdn.net/jinping_shi/article/details/52433975…
有两个php页面,demo1.php与demo2.php.如果想要在demo1.php创建一个session需要在的demo2.php或者说其它页面都可以获取到设置的session的值,达到会话的功能,有几种实现方式? 一.未屏蔽浏览器cookie demo1.php代码: <?php session_start(); $sid = session_id(); echo "sessionid:".$sid."<br/>"; $_SESSION['u…
认识 svm 在求解时, 通过某非线性变换 φ( x) ,将输入空间映射到高维特征空间.特征空间的维数可能非常高.如果支持向量机的求解只用到内积运算,而在低维输入空间又存在某个函数 K(x, x′) ,它恰好等于在高维空间中这个内积,即K( x, x′) =<φ( x) ⋅φ( x′) > .那么支持向量机就不用计算复杂的非线性变换,而由这个函数 K(x, x′) 直接得到非线性变换的内积,使大大简化了计算.这样的函数 K(x, x′) 称为核函数. 显然, 这样的论调, 让你似懂非懂, 待我…
本博客根据 百面机器学习,算法工程师带你去面试 一书总结归纳,公式都是出自该书. 本博客仅为个人总结学习,非商业用途,侵删. 网址 http://www.ptpress.com.cn 目录: PCA最大方差理论 PCA最小平方误差理论 在机器学习中, 数据通常需要被表示成向量形式以输入模型进行训练. 但是在对向维向量进行处理和分析时, 会极大地消耗系统资源, 甚至产生维度灾难. 因此, 对特征向量进行降维, 即用一个低维度的向量表示原始高维度的特征就显得尤为重要. PCA(Principal C…
主成分分析 线性.非监督.全局的降维算法 PCA最大方差理论 出发点:在信号处理领域,信号具有较大方差,噪声具有较小方差 目标:最大化投影方差,让数据在主投影方向上方差最大 PCA的求解方法: 对样本数据进行中心化处理 求样本协方差矩阵 对协方差矩阵进行特征分解,将特征值从大到小排列 取特征值前d大对应的特征向量\(w_1, w_2, \cdots, w_d\),通过以下变换将n维样本映射到d维 \[x^{'}_i = \begin{bmatrix} w_1^{T}x_i \\ w_2^Tx_i…
转自http://www.cnblogs.com/jerrylead/archive/2011/04/18/2020209.html http://www.cnblogs.com/jerrylead/archive/2011/04/18/2020216.html 几个特别有用 的链接: 更加深入理解pca,在斯坦福大学的机器学习上的更加深入的分析.. http://blog.csdn.net/ybdesire/article/details/64546435 http://blog.csdn.n…
数据降维 为了说明什么是数据的主成分,先从数据降维说起.数据降维是怎么回事儿?假设三维空间中有一系列点,这些点分布在一个过原点的斜面上,如果你用自然坐标系x,y,z这三个轴来表示这组数据的话,需要使用三个维度,而事实上,这些点的分布仅仅是在一个二维的平面上,那么,问题出在哪里?如果你再仔细想想,能不能把x,y,z坐标系旋转一下,使数据所在平面与x,y平面重合?这就对了!如果把旋转后的坐标系记为x’,y’,z’,那么这组数据的表示只用x’和y’两个维度表示即可!当然了,如果想恢复原来的表示方式,那…
PCA作用: 降维,PCA试图在力保数据信息丢失最少的原则下,用较少的综合变量代替原本较多的变量,而且综合变量间互不相关,减少冗余以及尽量消除噪声.   PCA数学原理: 设 是维向量 想经过线性变换得到其中F的各行向量相互独立,即 由于是实对称矩阵,因此存在正交矩阵A满足以上关系,令,即得,得 只根据第一列得出的方程为: 即 即 显然,是相关系数矩阵的特征值,是相应的特征向量. 根据第二列.第三列等可以得到类似的方程,于是 是方程 的p个根,为特征方程的特征根,是其特征向量的分量.   PCA…
原文:http://www.cnblogs.com/jerrylead/archive/2011/04/18/2020209.html 在这一篇之前的内容是<Factor Analysis>,由于非常理论,打算学完整个课程后再写.在写这篇之前,我阅读了PCA.SVD和LDA.这几个模型相近,却都有自己的特点.本篇打算先介绍PCA,至于他们之间的关系,只能是边学边体会了.PCA以前也叫做Principal factor analysis. 1. 问题 真实的训练数据总是存在各种各样的问题: 1.…
转自http://www.cnblogs.com/jerrylead/archive/2011/04/18/2020209.html http://www.cnblogs.com/jerrylead/archive/2011/04/18/2020216.html 几个特别有用 的链接: 更加深入理解pca,在斯坦福大学的机器学习上的更加深入的分析.. http://blog.csdn.net/ybdesire/article/details/64546435 http://blog.csdn.n…
0. 前言 之前上模式识别课程的时候,老师也讲过 MLP 的 BP 算法, 但是 ppt 过得太快,只有一个大概印象.后来课下自己也尝试看了一下 stanford deep learning 的 wiki, 还是感觉似懂非懂,不能形成一个直观的思路.趁着这个机会,我再次 revisit 一下.本文旨在说明对 BP 算法的直观印象,以便迅速写出代码,具体偏理论的链式法则可以参考我的下一篇博客(都是图片,没有公式). 1. LMS 算法 故事可以从线性 model 说起(顺带复习一下)-在线性 mo…
  主要参考:https://www.zhihu.com/question/38417101/answer/94338598 http://blog.jobbole.com/88208/ 先说下PCA的主要步骤:假设原始数据是10(行,样例数,y1-y10)*10(列,特征数x1-x10)的(10个样例,每样例对应10个特征)(1).分别求各特征(列)的均值并对应减去所求均值. (2).求特征协方差矩阵.&amp;lt;img src="https://pic2.zhimg.com/cc…
0. 引言 本文主要的目的在于讨论PAC降维和SVD特征提取原理,围绕这一主题,在文章的开头从涉及的相关矩阵原理切入,逐步深入讨论,希望能够学习这一领域问题的读者朋友有帮助. 这里推荐Mit的Gilbert Strang教授的线性代数课程,讲的非常好,循循善诱,深入浅出. Relevant Link:  Gilbert Strang教授的MIT公开课:数据分析.信号处理和机器学习中的矩阵方法 https://mp.weixin.qq.com/s/gi0RppHB4UFo4Vh2Neonfw 1.…
本文始发于个人公众号:TechFlow,原创不易,求个关注 今天是机器学习专题的第27文章,我们一起来聊聊数据处理领域的降维(dimensionality reduction)算法. 我们都知道,图片格式当中有一种叫做svg,这种格式的图片无论我们将它放大多少倍,也不会失真更不会出现边缘模糊的情况.原因也很简单,因为这种图片是矢量图,一般的图片存储的是每一个像素点的颜色值,而在矢量图当中,我们存储的是矢量,也就是起点终点以及颜色.由于矢量图只记录起点终点,所以无论我们如何放大,图片都不会失真,而…
[引言]--PCA降维的作用 面对海量的.多维(可能有成百上千维)的数据,我们应该如何高效去除某些维度间相关的信息,保留对我们"有用"的信息,这是个问题. PCA给出了我们一种解决方案和思路. PCA给我的第一印象就是去相关,这和数据(图像.语音)压缩的想法是一致的.当然,PCA像是一种有损的压缩算法.但是不要紧,去除掉的信息也许是噪声呢,而且损失的信息不是"主要成分". PCA 降维的概念不是简单的去除原特征空间的某些维度,而是找出原特征空间的新的正交基,并且这个…
1. 问题 真实的训练数据总是存在各种各样的问题: 1. 比如拿到一个汽车的样本,里面既有以“千米/每小时”度量的最大速度特征,也有“英里/小时”的最大速度特征,显然这两个特征有一个多余. 2. 拿到一个数学系的本科生期末考试成绩单,里面有三列,一列是对数学的兴趣程度,一列是复习时间,还有一列是考试成绩.我们知道要学好数学,需要有浓厚的兴趣,所以第二项与第一项强相关,第三项和第二项也是强相关.那是不是可以合并第一项和第二项呢? 3. 拿到一个样本,特征非常多,而样例特别少,这样用回归去直接拟合非…
问题 1. 比如拿到一个汽车的样本,里面既有以“千米/每小时”度量的最大速度特征,也有“英里/小时”的最大速度特征,显然这两个特征有一个多余. 2. 拿到一个数学系的本科生期末考试成绩单,里面有三列,一列是对数学的兴趣程度,一列是复习时间,还有一列是考试成绩.我们知道要学好数学,需要有浓厚的兴趣,所以第二项与第一项强相关,第三项和第二项也是强相关.那是不是可以合并第一项和第二项呢? 3. 拿到一个样本,特征非常多,而样例特别少,这样用回归去直接拟合非常困难,容易过度拟合.比如北京的房价:假设房子…
原理: 主成分分析 - stanford 主成分分析法 - 智库 主成分分析(Principal Component Analysis)原理 主成分分析及R语言案例 - 文库 主成分分析法的原理应用及计算步骤 - 文库 主成分分析之R篇 [机器学习算法实现]主成分分析(PCA)--基于python+numpy scikit-learn中PCA的使用方法 Python 主成分分析PCA 机器学习实战-PCA主成分分析.降维(好) 关于主成分分析的五个问题 多变量统计方法,通过析取主成分显出最大的个…
作者:桂. 时间:2017-02-26  19:54:26 链接:http://www.cnblogs.com/xingshansi/articles/6445625.html 声明:转载请注明出处,谢谢. 前言 本文为模式识别系列第一篇,主要介绍主成分分析算法(Principal Component Analysis,PCA)的理论,并附上相关代码.全文主要分六个部分展开: 1)简单示例.通过简单的例子,引出PCA算法: 2)理论推导.主要介绍PCA算法的理论推导以及对应的数学含义: 3)算法…
主成分分析(Principal components analysis)-最大方差解释 在这一篇之前的内容是<Factor Analysis>,由于非常理论,打算学完整个课程后再写.在写这篇之前,我阅读了PCA.SVD和LDA.这几个模型相近,却都有自己的特点.本篇打算先介绍PCA,至于他们之间的关系,只能是边学边体会了.PCA以前也叫做Principal factor analysis. 1. 问题 真实的训练数据总是存在各种各样的问题: 1. 比如拿到一个汽车的样本,里面既有以"…
2.5. Decomposing signals in components (matrix factorization problems) 2.5.1. Principal component analysis (PCA) 4.4. Unsupervised dimensionality reduction 4.4.1. PCA: principal component analysis PCA+ICA 解混过程:https://www.zhihu.com/question/28845451…