Spark练习之Transformation操作开发】的更多相关文章

Spark练习之Transformation操作开发 一.map:将集合中的每个元素乘以2 1.1 Java 1.2 Scala 二.filter:过滤出集合中的偶数 2.1 Java 2.2 Scala 三.flatMap:将行拆分为单词 3.1 Java 3.2 Scala 四.groupByKey:将每个班级的成绩进行分组 4.1 Java 2.2 Scala 五.reduceByKey:统计每个班级的总分 5.1 Java 5.2 Scala 六.sortByKey:将学生分数进行排序…
Spark练习之action操作开发 一.reduce 1.1 Java 1.2 Scala 二.collect 2.1 Java 2.2 Scala 三.count 3.1 Java 3.2 Scala 四.take 4.1 Java 4.2 Scala 五.saveAsTextFile 5.1 Java 六.countByKey 6.1 Java 6.2 Scala 七.foreach 八.main函数 8.1 Java 8.2 Scala 一.reduce 1.1 Java private…
1.map:将集合中每个元素乘以2 2.filter:过滤出集合中的偶数 3.flatMap:将行拆分为单词 4.groupByKey:将每个班级的成绩进行分组 5.reduceByKey:统计每个班级的总分 6.sortByKey.sortBy:将学生分数进行排序 7.join:打印每个学生的成绩 8.cogroup:打印每个学生的成绩   package sparkcore.java; import java.util.Arrays; import java.util.Iterator; i…
常用transformation及action介绍,spark算子详解 一.常用transformation介绍 1.1 transformation操作实例 二.常用action介绍 2.1 action操作实例 三.spark算子详解 3.1弹性分布式数据集 (RDD) 3.2Spark 算子大致可以分为以下两类 3.2.1Transformation 变换/转换算子:这种变换并不触发提交作业,完成作业中间过程处理 3.2.2Action 行动算子:这类算子会触发 SparkContext…
不多说,直接上干货! transformation操作 惰性求值 (1)RDD 的转化操作都是惰性求值的.这意味着在被调用行动操作之前Spark不会开始计算. (2)读取数据到RDD的操作也是惰性的. (3)惰性求值的好处: a. Spark 使用惰性求值可以把一些操作合并到一起来减少计算数据的步骤.在类似 Hadoop MapReduce 的系统中,开发者常常花费大量时间考虑如何把操作组合到一起,以减少MapReduce 的周期数. b. 而在Spark 中,写出一个非常复杂的映射并不见得能比…
不多说,直接上干货! Pair RDD的transformation操作 Pair RDD转换操作1 Pair RDD 可以使用所有标准RDD 上转化操作,还提供了特有的转换操作. Pair RDD转换操作2…
一. transformation操作概览 Transformation Meaning map 对传入的每个元素,返回一个新的元素 flatMap 对传入的每个元素,返回一个或多个元素 filter 对传入的元素返回true或false,返回的false的元素被过滤掉 union 将两个DStream进行合并 count 返回元素的个数 reduce 对所有values进行聚合 countByValue 对元素按照值进行分组,对每个组进行计数,最后返回<K, V>的格式 reduceByKe…
转自:http://my.oschina.net/hanzhankang/blog/200275 附:各种操作的逻辑执行图 https://github.com/JerryLead/SparkInternals/blob/master/markdown/2-JobLogicalPlan.md 本文提供的是0.7.3版本中的action和transformation接口,RDD提供了两种类型的操作:transformation和action 1. transformation是得到一个新的RDD,…
基于Receivers的方法 这个方法使用了Receivers来接收数据.Receivers的实现使用到Kafka高层次的消费者API.对于所有的Receivers,接收到的数据将会保存在Spark executors中,然后由Spark Streaming启动的Job来处理这些数据. 然而,在默认的配置下,这种方法在失败的情况下会丢失数据,为了保证零数据丢失,你可以在Spark Streaming中使用WAL日志,这是在Spark 1.2.0才引入的功能,这使得我们可以将接收到的数据保存到WA…
在本博客的<Spark Streaming和Kafka整合开发指南(一)>文章中介绍了如何使用基于Receiver的方法使用Spark Streaming从Kafka中接收数据.本文将介绍如何使用Spark 1.3.0引入的Direct API从Kafka中读数据. 和基于Receiver接收数据不一样,这种方式定期地从Kafka的topic+partition中查询最新的偏移量,再根据定义的偏移量范围在每个batch里面处理数据.当作业需要处理的数据来临时,spark通过调用Kafka的简单…