数据分析05 /pandas的高级操作】的更多相关文章

数据分析05 /pandas的高级操作 目录 数据分析05 /pandas的高级操作 1. 替换操作 2. 映射操作 3. 运算工具 4. 映射索引 / 更改之前索引 5. 排序实现的随机抽样/打乱表格数据 6. 数据的分类处理 / 分组 7. 高级数据聚合 8. 数据加载 9. 透视表 10. 交叉表 1. 替换操作 替换操作可以同步作用于Series和DataFrame中 创建df表格数据: import numpy as np import pandas as pd from pandas…
pandas数据处理 1. 删除重复元素 使用duplicated()函数检测重复的行,返回元素为布尔类型的Series对象,每个元素对应一行,如果该行不是第一次出现,则元素为True keep参数:指定保留哪一重复的行数据 创建具有重复元素行的DataFrame import numpy as np import pandas as pd from pandas import DataFrame # 创建一个df df = DataFrame(data=np.random.randint(0,…
  字符串对象方法 split()方法拆分字符串: strip()方法去掉空白符和换行符: split()结合strip()使用: "+"符号可以将多个字符串连接起来: join()方法也是连接字符串,比较它和"+"符号的区别: in关键字判断一个字符串是否包含在另一个字符串中: index()方法和find()方法判断一个子字符串的位置: index()方法和find()方法的区别是:如果不包含子字符串,index()会抛出一个异常,而find()会返回-1. c…
一.pandas数据结构介绍 在pandas中有两类非常重要的数据结构,即序列Series和数据框DataFrame.Series类似于numpy中的一维数组,除了通吃一维数组可用的函数或方法,而且其可通过索引标签的方式获取数据,还具有索引的自动对齐功能:DataFrame类似于numpy中的二维数组,同样可以通用numpy数组的函数和方法,而且还具有其他灵活应用,后续会介绍到. 二.pandas数据结构之Series #使用模块之前先导入import pandas as pd from pan…
数据分析06 /pandas高级操作相关案例:人口案例分析.2012美国大选献金项目数据分析 目录 数据分析06 /pandas高级操作相关案例:人口案例分析.2012美国大选献金项目数据分析 1. 人口分析案例 2. 2012美国大选献金项目数据分析 1. 人口分析案例 需求: 导入文件,查看原始数据 将人口数据和各州简称数据进行合并 将合并的数据中重复的abbreviation列进行删除 查看存在缺失数据的列 找到有哪些state/region使得state的值为NaN,进行去重操作 为找到…
pandas高级操作 import numpy as np import pandas as pd from pandas import DataFrame,Series 替换操作 替换操作可以同步作用于Series和DataFrame中 单值替换 普通替换: 替换所有符合要求的元素:to_replace=15,value='e' 按列指定单值替换: to_replace={列标签:替换值} value='value' 多值替换 列表替换: to_replace=[] value=[] 字典替换…
Pandas pandas需要导入 import pandas as pd from pandas import Series,DataFrame import numpy as np 1 Series Series是一种类似与一维数组的对象,由下面两个部分组成: values:一组数据(ndarray类型) index:相关的数据索引标签 Series的创建:默认索引为0到N-1的整数型索引 由列表创建 由numpy数组创建 #使用列表创建Series Series(data=[1,2,3])…
一.Pandas介绍 1.介绍 pandas 是基于NumPy 的一种工具,该工具是为了解决数据分析任务而创建的.Pandas 纳入了大量库和一些标准的数据模型,提供了高效地操作大型数据集所需的工具.pandas提供了大量能使我们快速便捷地处理数据的函数和方法.你很快就会发现,它是使Python成为强大而高效的数据分析环境的重要因素之一. 2.数据结构 Series:一维数组,与Numpy中的一维array类似.二者与Python基本的数据结构List也很相近.Series如今能保存不同种数据类…
先学了R,最近刚刚上手python,所以想着将python和R结合起来互相对比来更好理解python.最好就是一句python,对应写一句R. pandas可谓如雷贯耳,数据处理神器. 以下符号: =R= 代表着在R中代码是怎么样的. pandas 是基于 Numpy 构建的含有更高级数据结构和工具的数据分析包 类似于 Numpy 的核心是 ndarray,pandas 也是围绕着 Series 和 DataFrame 两个核心数据结构展开的 .Series 和 DataFrame 分别对应于一…
    参考学习资料:http://pandas.pydata.org 1.什么是Pandas? Pandas的名称来自于面板数据(panel data)和Python数据分析(data analysis). Pandas是一个强大的分析结构化数据的工具集,基于NumPy构建,提供了 高级数据结构 和 数据操作工具,它是使Python成为强大而高效的数据分析环境的重要因素之一. 一个强大的分析和操作大型结构化数据集所需的工具集 基础是NumPy,提供了高性能矩阵的运算 提供了大量能够快速便捷地处…