深度学习   深度学习学习目标: 1. TensorFlow框架的使用 2. 数据读取(解决大数据下的IO操作) + 神经网络基础 3. 卷积神经网络的学习 + 验证码识别的案例   机器学习与深度学习的区别 机器学习与深度学习的区别 1 特征提取方面 2 数据量和计算性能要求    3 算法代表 例如: 机器学习: 数据输入 –> 人工进行特征工程(需要大量专业领域知识) –> 分类算法计算 –> 得出结论 深度学习: 数据数据 –> 神经网络(通过将数据进行层层传递创建模型,自…
转自:https://www.qcloud.com/community/article/598765?fromSource=gwzcw.117333.117333.117333 这是<使用腾讯云 GPU 学习深度学习>系列文章的第二篇,主要介绍了 Tensorflow 的原理,以及如何用最简单的Python代码进行功能实现.本系列文章主要介绍如何使用 腾讯云GPU服务器 进行深度学习运算,前面主要介绍原理部分,后期则以实践为主. 往期内容: 使用腾讯云 GPU 学习深度学习系列之一:传统机器学…
Policy Gradient 初始学习李宏毅讲的强化学习,听台湾的口音真是费了九牛二虎之力,后来看到有热心博客整理的很细致,于是转载来看,当作笔记留待复习用,原文链接在文末.看完笔记再去听一听李宏毅老师的视频,就可以听懂个大概了.当然了还有莫凡的强化学习更具实战性,听莫凡的课基本上可以带我们入门. 术语和基本思想 基本组成: 1.actor (即policy gradient要学习的对象, 是我们可以控制的部分) 2.环境 environment (给定的,无法控制) 3.回报函数 rewar…
译自:http://sebastianruder.com/multi-task/ 1. 前言 在机器学习中,我们通常关心优化某一特定指标,不管这个指标是一个标准值,还是企业KPI.为了达到这个目标,我们训练单一模型或多个模型集合来完成指定得任务.然后,我们通过精细调参,来改进模型直至性能不再提升.尽管这样做可以针对一个任务得到一个可接受得性能,但是我们可能忽略了一些信息,这些信息有助于在我们关心的指标上做得更好.具体来说,这些信息就是相关任务的监督数据.通过在相关任务间共享表示信息,我们的模型在…
深度残差网络—ResNet总结 写于:2019.03.15—大连理工大学 论文名称:Deep Residual Learning for Image Recognition 作者:微软亚洲研究院的何凯明等人             论文地址:https://arxiv.org/pdf/1512.03385v1.pdf 摘要: 随着人们对于神经网络技术的不断研究和尝试,每年都会诞生很多新的网络结构或模型.这些模型大都有着经典神经网络的特点,但是又会有所变化.你说它们是杂交也好,是变种也罢,总之针对…
上一节对XGBoost算法的原理和过程进行了描述,XGBoost在算法优化方面主要在原损失函数中加入了正则项,同时将损失函数的二阶泰勒展开近似展开代替残差(事实上在GBDT中叶子结点的最优值求解也是使用的二阶泰勒展开(详细上面Tips有讲解),但XGBoost在求解决策树和最优值都用到了),同时在求解过程中将两步优化(求解最优决策树和叶子节点最优输出值)合并成为一步.本节主要对XGBoot进行实现并调参. XGBoost框架及参数 XGBoost原生框架与sklearn风格框架 XGBoost有…
特别棒的一篇文章,仍不住转一下,留着以后需要时阅读 基于Theano的深度学习(Deep Learning)框架Keras学习随笔-01-FAQ…
Spark MLlib Deep Learning Deep Belief Network (深度学习-深度信念网络)2.3 http://blog.csdn.net/sunbow0 第二章Deep Belief Network (深度信念网络) 实例 3.1 測试数据 依照上例数据,或者新建图片识别数据. 3.2 DBN实例 (读取固定样本:来源于经典优化算法測试函数Sphere Model)***********// //2 读取样本数据 Logger.getRootLogger.setLe…
我在 B 站学习深度学习(生动形象,跃然纸上) 视频地址:https://www.bilibili.com/video/av16577449/ tensorflow123 http://tensorflow123.com…
深度剖析 | 可微分学习的自适配归一化 (Switchable Normalization) 作者:罗平.任家敏.彭章琳 编写:吴凌云.张瑞茂.邵文琪.王新江 转自:知乎.原论文参考arXiv:1806.10779和代码Github. 导读:归一化技术已经成为深度学习系统必不可少的重要组成部分,对优化神经网络的参数.提高泛化性能有着重要作用.这些归一化方法包括但不限于批归一化BN(Batch Normalization),实例归一化IN(Instance Normalization),和层归一化…