VGG16内置于Keras,可以通过keras.applications模块中导入. --------------------------------------------------------将VGG16 卷积实例化:------------------------------------------------------------------------------------------------------------------------------------- from…
BERT:用于语义理解的深度双向预训练转换器(Transformer)   鉴于最近BERT在人工智能领域特别火,但相关中文资料却很少,因此将BERT论文理论部分(1-3节)翻译成中文以方便大家后续研究. ·  摘要   本文主要介绍一个名为BERT的模型.与现有语言模型不同的是,BERT旨在通过调节所有层中的上下文来进行深度双向的预训练.因此,预训练的BERT表示可以通过另外的输出层进行调整,以创建用于广泛任务的状态模型,例如问题转换和语言参考,而无需实质的任务特定体系结构修改.   BERT…
BERT:Pre-training of Deep Bidirectional Transformers for Language Understanding 谷歌AI语言组论文<BERT:语言理解的深度双向变换器预训练>,介绍一种新的语言表征模型BERT——来自变换器的双向编码器表征量.异于最新语言表征模型,BERT基于所有层的左.右语境来预训练深度双向表征量.BERT是首个大批句子层面和词块层面任务中取得当前最优性能的表征模型,性能超越许多使用任务特定架构的系统,刷新11项NLP任务当前最…
目录 简介 预训练任务简介 自回归语言模型 自编码语言模型 预训练模型的简介与对比 ELMo 细节 ELMo的下游使用 GPT/GPT2 GPT 细节 微调 GPT2 优缺点 BERT BERT的预训练 输入表征 Fine-tunninng 缺点 ELMo/GPT/BERT对比,其优缺点 BERT-wwm RoBERTa ERNIE(艾尼) 1.0 ERNIE 2.0 XLNet 提出背景 排列语言模型(Permutation Language Model,PLM) Two-Stream Sel…
一.学习NLP背景介绍:      从2019年4月份开始跟着华为云ModelArts实战营同学们一起进行了6期关于图像深度学习的学习,初步了解了关于图像标注.图像分类.物体检测,图像都目标物体检测等,基本了解了卷积神经网络(CNN)原理及相关常用模型,如:VGG16.MaxNet等.之后从9月份开始在华为云AI专家的带领指引下,对AI深度学习的另外一个重要领域:自然语言处理(NLP)的学习,到目前为止学习了:命名实体识别.文本分类.文本相似度分析.问答系统.人脸检测.在这一个多月对NLP的处理…
论文标题:Mask and Reason: Pre-Training Knowledge Graph Transformers for Complex Logical Queries 论文地址: https://arxiv.org/abs/2208.07638 论文会议: KDD 2022 17.(2022.8.16)KDD-kgTransformer:复杂逻辑查询的预训练知识图谱Transformer 17.(2022.8.16)KDD-kgTransformer:复杂逻辑查询的预训练知识图谱…
NLP中的Word2Vec讲解 word2vec是Google开源的一款用于词向量计算 的工具,可以很好的度量词与词之间的相似性: word2vec建模是指用CBoW模型或Skip-gram模型来计算不同 词语的向量(word vector) CBoW是给定上下文来预测输入词.Skip-gram给定输入词预测上下文,但最终都会得到词向量矩阵W 上图为词向量的部分可视化结构 Statistical Language Model (统计语言模型)  在深入word2vec之前,首先回顾下nlp中的一…
Building your Recurrent Neural Network - Step by Step Welcome to Course 5's first assignment! In this assignment, you will implement your first Recurrent Neural Network in numpy. Recurrent Neural Networks (RNN) are very effective for Natural Language…
Building your Deep Neural Network: Step by Step Welcome to your third programming exercise of the deep learning specialization. You will implement all the building blocks of a neural network and use these building blocks in the next assignment to bui…
Building your Recurrent Neural Network - Step by Step Welcome to Course 5's first assignment! In this assignment, you will implement your first Recurrent Neural Network in numpy. Recurrent Neural Networks (RNN) are very effective for Natural Language…