【转转】 Huber Loss】的更多相关文章

Huber Loss 是一个用于回归问题的带参损失函数, 优点是能增强平方误差损失函数(MSE, mean square error)对离群点的鲁棒性. 当预测偏差小于 δ 时,它采用平方误差, 当预测偏差大于 δ 时,采用的线性误差. 相比于最小二乘的线性回归,HuberLoss降低了对离群点的惩罚程度,所以 HuberLoss 是一种常用的鲁棒的回归损失函数. Huber Loss 定义如下 \[ \begin{split} L_\delta(a)=\left \{ \begin{array…
均方误差(Mean Square Error,MSE)和平均绝对误差(Mean Absolute Error,MAE) 是回归中最常用的两个损失函数,但是其各有优缺点.为了避免MAE和MSE各自的优缺点,在Faster R-CNN和SSD中使用\(\text{Smooth} L_1\)损失函数,当误差在\([-1,1]\) 之间时,\(\text{Smooth} L_1\)损失函数近似于MSE,能够快速的收敛:在其他的区间则近似于MAE,其导数为\(\pm1\),不会对离群值敏感. 本文再介绍几…
Huber Loss 是一个用于回归问题的带参损失函数, 优点是能增强平方误差损失函数(MSE, mean square error)对离群点的鲁棒性. 当预测偏差小于 δ 时,它采用平方误差,当预测偏差大于 δ 时,采用的线性误差. 相比于最小二乘的线性回归,HuberLoss降低了对离群点的惩罚程度,所以 HuberLoss 是一种常用的鲁棒的回归损失函数. Huber Loss 定义如下: 参数 a 通常表示 residuals,写作 y−f(x),当 a = y−f(x) 时,Huber…
转载:https://mp.weixin.qq.com/s/Xbi5iOh3xoBIK5kVmqbKYA https://baijiahao.baidu.com/s?id=1611951775526158371&wfr=spider&for=pc 无论在机器学习还是深度领域中,损失函数都是一个非常重要的知识点.损失函数(Loss Function)是用来估量模型的预测值 f(x) 与真实值 y 的不一致程度.我们的目标就是最小化损失函数,让 f(x) 与 y 尽量接近.通常可以使用梯度下降…
from https://blog.csdn.net/lanchunhui/article/details/50427055请移步原文…
回归损失函数:L1,L2,Huber,Log-Cosh,Quantile Loss 2019-06-04 20:09:34 clover_my 阅读数 430更多 分类专栏: 阅读笔记   版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. 本文链接:https://blog.csdn.net/clover_my/article/details/90777964 回归损失函数:L1,L2,Huber,Log-Cosh,Quantile Loss…
好文mark 转自机器之心 :https://www.jiqizhixin.com/articles/2018-06-21-3 “损失函数”是机器学习优化中至关重要的一部分.L1.L2损失函数相信大多数人都早已不陌生.那你了解Huber损失.Log-Cosh损失.以及常用于计算预测区间的分位数损失么?这些可都是机器学习大牛最常用的回归损失函数哦! 机器学习中所有的算法都需要最大化或最小化一个函数,这个函数被称为“目标函数”.其中,我们一般把最小化的一类函数,称为“损失函数”.它能根据预测结果,衡…
原文: http://www.voidcn.com/article/p-rtzqgqkz-bpg.html 最近看了下 PyTorch 的损失函数文档,整理了下自己的理解,重新格式化了公式如下,以便以后查阅. 注意下面的损失函数都是在单个样本上计算的,粗体表示向量,否则是标量.向量的维度用 N 表示. nn.L1Loss loss(x,y)=1N∑i=1N|x−y| nn.SmoothL1Loss 也叫作 Huber Loss,误差在 (-1,1) 上是平方损失,其他情况是 L1 损失. los…
在深度学习中会遇到各种各样的任务,我们期望通过优化最终的loss使网络模型达到期望的效果,因此loss的选择是十分重要的. cross entropy loss cross entropy loss和log loss,logistic loss是同一种loss.常用于分类问题,一般是配合softmax使用的,通过softmax操作得到每个类别的概率值,然后计算loss. softmax函数为: ,, 除了e,还可以使用另一个底数b,b>0,选择一个较大的b值,将创建一个概率分布,该分布更集中于输…
在统计学习角度,Huber损失函数是一种使用鲁棒性回归的损失函数,它相比均方误差来说,它对异常值不敏感.常常被用于分类问题上. 下面先给出Huber函数的定义: 这个函数对于小的a值误差函数是二次的,而对大的值误差函数是线性的.变量a表述residuals,用以描述观察值与预测值之差:,因此我们可以将上面的表达式写成下面的形式: Huber loss (green, ) and squared error loss (blue) as a function of  两个最常用的损失函数是平方损失…