spark广播变量定时更新】的更多相关文章

广播变量 先来简单介绍下spark中的广播变量: 广播变量允许程序员缓存一个只读的变量在每台机器上面,而不是每个任务保存一份拷贝.例如,利用广播变量,我们能够以一种更有效率的方式将一个大数据量输入集合的副本分配给每个节点.Spark也尝试着利用有效的广播算法去分配广播变量,以减少通信的成本. 一个广播变量可以通过调用SparkContext.broadcast(v)方法从一个初始变量v中创建.广播变量是v的一个包装变量,它的值可以通过value方法访问,下面的代码说明了这个过程: scala>…
Spark广播变量 使用广播变量来优化,广播变量的原理是: 在每一个Executor中保存一份全局变量,task在执行的时候需要使用和这一份变量就可以,极大的减少了Executor的内存开销. Executor中task在执行的时候如果使用到了广播变量,会找Executor里面的BlockManager来获取广播变量. 如果BlockManager中没有这个关闭变量,会从driver端拉取关闭变量. 在Driver端也有一个blockManagerMaster,其他的task执行的时候直接使用b…
环境 虚拟机:VMware 10 Linux版本:CentOS-6.5-x86_64 客户端:Xshell4 FTP:Xftp4 jdk1.8 scala-2.10.4(依赖jdk1.8) spark-1.6 一.广播变量 package com.wjy import org.apache.spark.SparkConf import org.apache.spark.SparkContext object GuboVal { def main(args: Array[String]): Uni…
1. 广播变量 理解图 使用示例 # word.txt hello scala hello python hello java hello go hello julia hello C++ hello lucene package com.ronnie.scala.core.Test import org.apache.spark.broadcast.Broadcast import org.apache.spark.{SparkConf, SparkContext} object BroadC…
一. 广播变量 广播变量允许程序员将一个只读的变量缓存在每台机器上,而不用在任务之间传递变量.广播变量可被用于有效地给每个节点一个大输入数据集的副本.Spark还尝试使用高效地广播算法来分发变量,进而减少通信的开销. Spark的动作通过一系列的步骤执行,这些步骤由分布式的洗牌操作分开.Spark自动地广播每个步骤每个任务需要的通用数据.这些广播数据被序列化地缓存,在运行任务之前被反序列化出来.这意味着当我们需要在多个阶段的任务之间使用相同的数据,或者以反序列化形式缓存数据是十分重要的时候,显式…
一.广播变量图解 二.代码 val conf = new SparkConf() conf.setMaster("local").setAppName("brocast") val sc = new SparkContext(conf) val list = List("hello xasxt") val broadCast = sc.broadcast(list) val lineRDD = sc.textFile("./words.…
Spark 的一个核心功能是创建两种特殊类型的变量:广播变量和累加器 广播变量(groadcast varible)为只读变量,它有运行SparkContext的驱动程序创建后发送给参与计算的节点.对那些需要让工作节点高效地访问相同数据的应用场景,比如机器学习.我们可以在SparkContext上调用broadcast方法创建广播变量: val broadcastList = sc.broadcast(List("Spark","Impala","Hado…
Spark RDD持久化 RDD持久化工作原理 Spark非常重要的一个功能特性就是可以将RDD持久化在内存中.当对RDD执行持久化操作时,每个节点都会将自己操作的RDD的partition持久化到内存中,并且在之后对该RDD的反复使用中,直接使用内存缓存的partition.这样的话,对于针对一个RDD反复执行多个操作的场景,就只要对RDD计算一次即可,后面直接使用该RDD,而不需要反复计算多次该RDD. 巧妙使用RDD持久化,甚至在某些场景下,可以将spark应用程序的性能提升10倍.对于迭…
一言以蔽之: 累加器就是只写变量 通常就是做事件统计用的 因为rdd是在不同的excutor去执行的 你在不同excutor中累加的结果 没办法汇总到一起 这个时候就需要累加器来帮忙完成 广播变量是只读变量 正常的话我们在driver定义一个变量 需要序列化 才能在excutor端使用  而且是每个task都需要传输一次 这样如果我们定义的对象很大的话 就会产生大量的IO  如果你把这个大对象定义成广播变量的话 我们只需要每个excutor发送一份就可以 如果task需要时 只需要从excuto…
广播变量 背景 一般Task大小超过10K时(Spark官方建议是20K),需要考虑使用广播变量进行优化.大表小表Join,小表使用广播的方式,减少Join操作. 参考:Spark广播变量与累加器 Local Dir 背景 shuffle过程中,临时数据需要写入本地磁盘.本地磁盘的临时目录通过参数spark.local.dir配置. 性能优化点 spark.local.dir支持配置多个目录.配置spark.local.dir有多个目录,每个目录对应不同的磁盘,这样可以提升IO效率.另外,可以采…