首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
spark机器学习从0到1特征抽取–CountVectorizer(十三)
】的更多相关文章
spark机器学习从0到1特征抽取–CountVectorizer(十三)
一.概念 CountVectorizer 旨在通过计数来将一个文档转换为向量.当不存在先验字典时,Countvectorizer作为Estimator提取词汇进行训练,并生成一个CountVectorizerModel用于存储相应的词汇向量空间.该模型产生文档关于词语的稀疏表示,其表示可以传递给其他算法,例如LDA( Latent Dirichlet Allocation 隐含狄利克雷分布). 在CountVectorizerModel的训练过程中,CountVectorizer将根据语…
spark机器学习从0到1特征抽取–Word2Vec(十四)
一.概念 Word2vec是一个Estimator,它采用一系列代表文档的词语来训练word2vecmodel.该模型将每个词语映射到一个固定大小的向量.word2vecmodel使用文档中每个词语的平均数来将文档转换为向量,然后这个向量可以作为预测的特征,来计算文档相似度计算等等. 二.代码实现 2.1.引包,获取spark 首先,我们引入相关包: import java.util.Arrays; import java.util.List; import org.apache.spark…
spark机器学习从0到1介绍入门之(一)
一.什么是机器学习 机器学习(Machine Learning, ML)是一门多领域交叉学科,涉及概率论.统计学.逼近论.凸分析.算法复杂度理论等多门学科.专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能.它是人工智能的核心,是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域,它主要使用归纳.综合而不是演绎.一种经常引用的英文定义是: A computer program is said to learn from exp…
spark机器学习从0到1特征提取 TF-IDF(十二)
一.概念 “词频-逆向文件频率”(TF-IDF)是一种在文本挖掘中广泛使用的特征向量化方法,它可以体现一个文档中词语在语料库中的重要程度. 词语由t表示,文档由d表示,语料库由D表示.词频TF(t,d)是词语t在文档d中出现的次数.文件频率DF(t,D)是包含词语的文档的个数.如果我们只使用词频来衡量重要性,很容易过度强调在文档中经常出现,却没有太多实际信息的词语,比如“a”,“the”以及“of”.如果一个词语经常出现在语料库中,意味着它并不能很好的对文档进行区分.TF-IDF就是在数…
spark机器学习从0到1特征变换-标签和索引的转化(十六)
一.原理 在机器学习处理过程中,为了方便相关算法的实现,经常需要把标签数据(一般是字符串)转化成整数索引,或是在计算结束后将整数索引还原为相应的标签. Spark ML 包中提供了几个相关的转换器: StringIndexer,IndexToString,OneHotEncoder,VectorIndexer,他们提供了十分方便的特征转换功能,这些转换器都位于org.apache.spark.ml.feature包下. 值得注意的是,用于特征转换的转换器和其他的机器学习算法一样,也属于Ml…
spark机器学习从0到1特征选择-卡方选择器(十五)
一.公式 卡方检验的基本公式,也就是χ2的计算公式,即观察值和理论值之间的偏差 卡方检验公式 其中:A 为观察值,E为理论值,k为观察值的个数,最后一个式子实际上就是具体计算的方法了 n 为总的频数,p为理论频率,那么n*p自然就是理论频数(理论值) 二.相关概念 卡方分布:可以看出当观察值和理论值十分接近的时候,也就是我们做的假设是正确的时候,χ2的值就越趋近于0,也就是说我们计算的偏差越小,那么假设值就越可能是对的,反之偏差值越大,假设值就越不准确.那么到底多大才算不准确,有没有个衡…
spark机器学习从0到1机器学习工作流 (十一)
一.概念 一个典型的机器学习过程从数据收集开始,要经历多个步骤,才能得到需要的输出.这非常类似于流水线式工作,即通常会包含源数据ETL(抽取.转化.加载),数据预处理,指标提取,模型训练与交叉验证,新数据预测等步骤. MLlib标准化了用于机器学习算法的API,从而使将多种算法组合到单个管道或工作流程中变得更加容易. 本节介绍了Pipelines API引入的关键概念,其中PipeLine(管道)概念主要受scikit-learn项目的启发. 在介绍工作流之前,我们先来了解几个重要概念:…
spark机器学习从0到1奇异值分解-SVD (七)
降维(Dimensionality Reduction) 是机器学习中的一种重要的特征处理手段,它可以减少计算过程中考虑到的随机变量(即特征)的个数,其被广泛应用于各种机器学习问题中,用于消除噪声.对抗数据稀疏问题.它在尽可能维持原始数据的内在结构的前提下,得到一组描述原数据的,低维度的隐式特征(或称主要特征).简单来说,在高维数据中筛选出对我们有用的变量,减小计算复杂度提高模型训练效率和准确率,这就是我们要说的降维. MLlib机器学习库提供了两个常用的降维方法:奇异值分解(Singula…
spark机器学习从0到1决策树(六)
一.概念 决策树及其集合是分类和回归的机器学习任务的流行方法. 决策树被广泛使用,因为它们易于解释,处理分类特征,扩展到多类分类设置,不需要特征缩放,并且能够捕获非线性和特征交互. 诸如随机森林和增强的树集合算法是分类和回归任务的最佳表现者. 决策树(decision tree)是一种基本的分类与回归方法,这里主要介绍用于分类的决策树.决策树模式呈树形结构,其中每个内部节点表示一个属性上的测试,每个分支代表一个测试输出,每个叶节点代表一种类别.学习时利用训练数据,根据损失函数最小化的原则建立…
spark机器学习从0到1基本数据类型之(二)
MLlib支持存储在单个机器上的局部向量和矩阵,以及由一个或多个RDD支持的分布式矩阵. 局部向量和局部矩阵是用作公共接口的简单数据模型. 底层线性代数操作由Breeze提供. 在监督学习中使用的训练示例在MLlib中称为“标记点”. 一.本地向量 局部向量具有整数类型和基于0的索引和双类型值,存储在单个机器上. MLlib支持两种类型的局部向量:密集和稀疏. 密集向量由表示其条目值的双数组支持,而稀疏向量由两个并行数组支持:索引和值. 例如,矢量(1.0,0.0,3.0)可以以密集格式…