论文提出MetaQNN,基于Q-Learning的神经网络架构搜索,将优化视觉缩小到单层上,相对于Google Brain的NAS方法着眼与整个网络进行优化,虽然准确率差了2-3%,但搜索过程要简单地多,所以才能仅用100GPU days就可以完成搜索,加速240倍.论文本身是个很初期的想法,可以看到搜索出来的网络结构还是比较简单的,也需要挺多的人工约束.整体而言,论文的输出的搜索思想还是很重要的,有很多参考的地方   来源:晓飞的算法工程笔记 公众号 论文: Designing Neural…
论文提出aging evolution,一个锦标赛选择的变种来优化进化算法,在NASNet搜索空间上,对比强化学习和随机搜索,该算法足够简洁,而且能够更快地搜索到更高质量的模型,论文搜索出的AmoebaNet-A在ImageNet上能达到SOTA   来源:[晓飞的算法工程笔记] 公众号 论文: Regularized Evolution for Image Classifier Architecture Search 论文地址:https://arxiv.org/abs/1802.01548…
基于模型的强化学习方法数据效率高,前景可观.本文提出了一种基于模型的元策略强化学习方法,实践证明,该方法比以前基于模型的方法更能够应对模型缺陷,还能取得与无模型方法相近的性能. 引言 强化学习领域近期取得的很多成就都是通过无模型强化学习算法 [1,2,3] 实现的.无模型(MF)算法倾向于实现最佳性能,通常可应用且易于实现. 然而,这是以数据密集为代价实现的,当与诸如神经网络的大容量函数近似器结合时,情况会恶化.它们的高样本复杂性阻碍其应用于机器人控制任务,在这些任务上收集数据代价高昂. 相比之…
作者:牛阿链接:https://www.zhihu.com/question/26408259/answer/123230350来源:知乎著作权归作者所有.商业转载请联系作者获得授权,非商业转载请注明出处. 2017年06月05日更新,最近重写了一遍代码,Flappy Bird Q-learning.你可以在这里试着训练一下,加到最大帧数,在一两分钟内就可以达到10+的分数. 原答案: 最近看到了一个回答.答主用汇编语言写了一个flappy bird并在其之上加了一个Q-learning的算法让…
之前讲到Sarsa和Q Learning都不太适合解决大规模问题,为什么呢? 因为传统的强化学习都有一张Q表,这张Q表记录了每个状态下,每个动作的q值,但是现实问题往往极其复杂,其状态非常多,甚至是连续的, 比如足球场上足球的位置,此时,内存将无力承受这张Q表. 价值函数近似 既然Q表太大,那么怎么办呢? 假设我们可以找到一种方法来预测q值,那么在某个状态下,就可以估计其每个动作的q值,这样就不需要Q表了,这就是价值函数近似. 假设这个函数由参数w描述,那么 状态价值函数就表示为 v(s)≍f(…
深度学习与计算机视觉(11)_基于deep learning的快速图像检索系统 作者:寒小阳 时间:2016年3月. 出处:http://blog.csdn.net/han_xiaoyang/article/details/50856583 声明:版权所有,转载请联系作者并注明出处 1.引言 本系统是基于CVPR2015的论文<Deep Learning of Binary Hash Codes for Fast Image Retrieval>实现的海量数据下的基于内容图片检索系统,250w…
数据结构实验之图论二:基于邻接表的广度优先搜索遍历 Time Limit: 1000MS Memory Limit: 65536KB Submit Statistic Problem Description 给定一个无向连通图,顶点编号从0到n-1,用广度优先搜索(BFS)遍历,输出从某个顶点出发的遍历序列.(同一个结点的同层邻接点,节点编号小的优先遍历) Input 输入第一行为整数n(0< n <100),表示数据的组数.对于每组数据,第一行是三个整数k,m,t(0<k<100…
论文提出NASH方法来进行神经网络结构搜索,核心思想与之前的EAS方法类似,使用网络态射来生成一系列效果一致且继承权重的复杂子网,本文的网络态射更丰富,而且仅需要简单的爬山算法辅助就可以完成搜索,耗时0.5GPU day   来源:晓飞的算法工程笔记 公众号 论文: Simple And Efficient Architecture Search for Convolutional Neural Networks 论文地址:https://arxiv.org/pdf/1711.04528.pdf…
本文是深度学习入门: 基于Python的实现.神经网络与深度学习(NNDL)以及动手学深度学习的读书笔记.本文将介绍基于Numpy的卷积神经网络(Convolutional Networks,CNN)的实现,本文主要重在理解原理和底层实现. 一.概述 1.1 卷积神经网络(CNN) 卷积神经网络(CNN)是一种具有局部连接.权重共享和平移不变特性的深层前馈神经网络. CNN利用了可学习的kernel卷积核(filter滤波器)来提取图像中的模式(局部和全局).传统图像处理会手动设计卷积核(例如高…
前言 一直以来个人博客的搜索功能很蹩脚,只是自己简单用数据库的like %keyword%来实现的,所以导致经常搜不到想要找的内容,而且高亮显示.摘要截取等也不好实现,所以决定采用Lucene改写博客的搜索功能.先来看一下最终效果: 本文demo地址:https://github.com/liuxianan/lucene-demo (包括本文需要用到的jar包可以从这里面下载) 效果演示地址:http://blog.liuxianan.com/search?kw=%E7%AB%AF%E5%8F%…