Similarity-based Learning】的更多相关文章

强化学习之 免模型学习(model-free based learning) ------ 蒙特卡罗强化学习 与 时序查分学习 ------ 部分节选自周志华老师的教材<机器学习> 由于现实世界当中,很难获得环境的转移概率,奖赏函数等等,甚至很难知道有多少个状态.倘若学习算法是不依赖于环境建模,则称为“免模型学习(model-free learning)”,这比有模型学习要难得多. 1. 蒙特卡罗强化学习: 在免模型学习的情况下,策略迭代算法会遇到几个问题: 首先,是策略无法评估,因为无法做全…
https://www.gamedesigning.org/learn/game-based-learning/ I remember days gone by at elementary school when we would all file into the computer lab. We would all get a computer and boot up educational games like Math Blaster and Oregon Trail. Although…
Forty years of research[i] says yes, games are effective learning tools. People learn from games, and they will learn more from a game than from other forms of learning.[ii] However, most people don’t get whygames work, which causes them to dismiss g…
chip types Transistor mode of operation Digital chip: 0/1  -> digital clac Analog chip: sound / blight -> physical phenomena Function of chip Processor chip: CPU Memory storage chip: DRAM / NAND Flash Specific function chip: WIFI / Bluetooth / Power…
简单整理了一些嵌入式底层需要接触的相关概念.   # CPU  CU. Control Unit. send need-clac-data -> ALU clac -> get result send back -> to save in memory ALU Arithmetic Logic Unit.  Binary clac, such as add/sub/mult(except interger division)  MMU. Memory Management Unit. …
(聊两句,突然记起来以前一个学长说的看论文要能够把论文的亮点挖掘出来,合理的进行概括23333) 传统的推荐系统方法获取的user-item关系并不能获取其中非线性以及非平凡的信息,获取非线性以及非平凡的信息恰恰是深度学习所具备的特点.论文对基于深度的学习的推荐系统方法进行了对比以及分类.文章的主要贡献有以下三点: > 对基于深度学习技术的推荐模型进行系统评价,并提出一种分类和组织当前工作的分类方案. > 提供现有技术的概述和总结 > 我们讨论挑战和开放性问题,并确定本研究中的新趋势和未…
A Complete Tutorial on Tree Based Modeling from Scratch (in R & Python) MACHINE LEARNING PYTHON R   SHARE      MANISH SARASWAT, APRIL 12, 2016 / 52     Introduction Tree based learning algorithms are considered to be one of the best and mostly used s…
100 Most Popular Machine Learning Video Talks 26971 views, 1:00:45,  Gaussian Process Basics, David MacKay, 8 comments 7799 views, 3:08:32, Introduction to Machine Learning, Iain Murray 16092 views, 1:28:05, Introduction to Support Vector Machines, C…
In this post we take a tour of the most popular machine learning algorithms. It is useful to tour the main algorithms in the field to get a feeling of what methods are available. There are so many algorithms available and it can feel overwhelming whe…
读了一篇paper,MSRA的Wei Wu的一篇<Learning Query and Document Similarities from Click-through Bipartite Graph with Metadata>.是关于Ranking Relevence方面的文章.下面简单讲下我对这篇文章的理解,对这方面感兴趣的小伙伴们可以交流一下. 1. Abstract 这篇文章的重点在于使用query-doc的点击二部图,结合query/doc的meta数据(组织成multiple t…