R之data.table速查手册】的更多相关文章

R语言data.table速查手册 介绍 R中的data.table包提供了一个data.frame的高级版本,让你的程序做数据整型的运算速度大大的增加.data.table已经在金融,基因工程学等领域大放光彩.他尤其适合那些需要处理大型数据集(比如 1GB 到100GB)需要在内存中处理数据的人.不过这个包的一些符号并不是很容易掌握,因为这些操作方式在R中比较少见.这也是这篇文章的目的,为了给大家提供一个速查的手册. data.table的通用格式: DT[i, j, by],对于数据集DT,…
R语言处理大规模数据速度不算快,通过安装其他包比如data.table可以提升读取处理速度. 案例,分别用read.csv和data.table包的fread函数读取一个1.67万行.230列的表格数据. # 用read.csv读取数据timestart<-Sys.time() data <- read.csv("XXXXs.csv",header = T,stringsAsFactors = F) timeend<-Sys.time() runningtime<…
<zw版·Halcon-delphi系列原创教程> zw版-Halcon常用函数Top100中文速查手册 Halcon函数库非常庞大,v11版有1900多个算子(函数). 这个Top版,对最常用的函数,做了中文说明,目前约250条,以后会逐步优化.增减. 目标是,类似常用英文单词500一样,做成<Halcon常用函数300条>.<halcon常用函数500条>等版本,方便大 家学习. 考虑到通用性,函数采用的是Halcon手册格式,没有转成delphi版,请大家注意.…
本文翻译自文章: Pandas Cheat Sheet - Python for Data Science ,同时添加了部分注解. 对于数据科学家,无论是数据分析还是数据挖掘来说,Pandas是一个非常重要的Python包.它不仅提供了很多方法,使得数据处理非常简单,同时在数据处理速度上也做了很多优化,使得和Python内置方法相比时有了很大的优势. 如果你想学习Pandas,建议先看两个网站. (1)官网: Python Data Analysis Library (2)十分钟入门Pandas…
jupyter notebook快捷键速查手册 Enter : 转入编辑模式 Shift-Enter : 运行本单元,选中下个单元 Ctrl-Enter : 运行本单元 Alt-Enter : 运行本单元,在其下插入新单元 Y : 单元转入代码状态 M :单元转入markdown状态 R : 单元转入raw状态 1 : 设定 1 级标题 2 : 设定 2 级标题 3 : 设定 3 级标题 4 : 设定 4 级标题 5 : 设定 5 级标题 6 : 设定 6 级标题 Up : 选中上方单元 K :…
Create by Jane/Santaizi 03:57:00 3/14/2016 All right reserved. 速查手册基于 CUDA 7.0 toolkit documentation 并对原文进行了精简. 手册专注于CUDA的GPU计算方面,不涉及图形显示.如需完整档请查原文http://docs.nvidia.com/cuda/index.html#axzz42oaojUNj 3.2.4 Page-Locked Host Memory 在Host CPU程序中划出的内存区域供…
关键缩写和包导入 在这个速查手册中,我们使用如下缩写: df:任意的Pandas DataFrame对象 同时我们需要做如下的引入: import pandas as pd 导入数据 pd.read_csv(filename):从CSV文件导入数据 pd.read_table(filename):从限定分隔符的文本文件导入数据 pd.read_excel(filename):从Excel文件导入数据 pd.read_sql(query, connection_object):从SQL表/库导入数…
本文翻译自文章:Pandas Cheat Sheet - Python for Data Science,同时添加了部分注解. 对于数据科学家,无论是数据分析还是数据挖掘来说,Pandas是一个非常重要的Python包.它不仅提供了很多方法,使得数据处理非常简单,同时在数据处理速度上也做了很多优化,使得和Python内置方法相比时有了很大的优势. 如果你想学习Pandas,建议先看两个网站. (1)官网:Python Data Analysis Library (2)十分钟入门Pandas:10…
本文翻译自文章:Pandas Cheat Sheet - Python for Data Science 对于数据科学家,无论是数据分析还是数据挖掘来说,Pandas是一个非常重要的Python包.它不仅提供了很多方法,使得数据处理非常简单,同时在数据处理速度上也做了很多优化,使得和Python内置方法相比时有了很大的优势. 如果你想学习Pandas,建议先看两个网站. (1)官网:Python Data Analysis Library (2)十分钟入门Pandas:10 Minutes to…
本文翻译自文章:Pandas Cheat Sheet - Python for Data Science,同时添加了部分注解. 对于数据科学家,无论是数据分析还是数据挖掘来说,Pandas是一个非常重要的Python包.它不仅提供了很多方法,使得数据处理非常简单,同时在数据处理速度上也做了很多优化,使得和Python内置方法相比时有了很大的优势. 如果你想学习Pandas,建议先看两个网站. (1)官网:Python Data Analysis Library (2)十分钟入门Pandas:10…