ok6410,mmu,内存管理】的更多相关文章

MMU 一.MMU学习 MMU其实就是一个页表.将虚拟地址通过查表的方式,对应到物理地址去他由一个或一组芯片组成,一般存在与协处理器中. 1.将虚拟地址转化为物理地址 2.访问权限管理 1.1得出mmu功能 这个图就说明了MMU的作用: 有三个任务在运行,运行的地址都是0x400000,如果不进行处理,肯定是不行的.所以加入了MMU,MMU其实就是一个页表.将虚拟地址通过查表的方式,对应到物理地址去.虽然三个任务的运行地址都是0x400000,但是这个地址是虚拟地址,在页表中,将每个任务的虚拟地…
arm-linux学习-(MMU内存管理单元) 什么是MMU MMU(Memory Management Unit)主要用来管理虚拟存储器.物理存储器的控制线路,同时也负责虚拟地址映射为物理地址,以及提供硬件机制的内存访问授权.多任务多进程操作系统.(来自百度百科,对其几个点不熟悉,因此可以只考虑加粗部分) 发展历史 注意:学习一个知识点,很重要的一步是了解其为什么而存在?它的存在是为了解决什么问题?然后,在学习的过程中带着这些问题去理解.去思考. 在许多年以前,还是使用DOS或一些古老的操作系…
MMU内存管理单元 https://www.cnblogs.com/alantu2018/p/9002309.html 之前对这一块一直不理解 最近学习了点 CPU time slice 以及 context switch 还有 zero copy 以及 Copy on write 技术之后 终于明白了一点 MMU 的相关作用.. 其实这些内容 应该是 大二计算机操作系统课程上面就应该学习到的.. 感觉这些年一直理解的不够深入. arm-linux学习-(MMU内存管理单元) 什么是MMU MM…
1.MMU是Memory Management Unit的缩写,中文名是内存管理单元,它是中央处理器(CPU)中用来管理虚拟存储器.物理存储器的控制线路,同时也负责虚拟地址映射为物理地址,以及提供硬件机制的内存访问授权,多用户多进程操作系统. 2.虚拟内存由来:许多年以前,当人们还在使用DOS或是更古老的操作系统的时候,计算机的内存还非常小,一般都是以K为单位进行计算,相应的,当时的程序规模也不大,所以内存容量虽然小,但还是可以容纳当时的程序.但随着图形界面的兴起还有用户需求的不断增大,应用程序…
本文转载自:https://blog.csdn.net/fengyuwuzu0519/article/details/66479248 1.MMU定义: MMU是Memory Management Unit的缩写,中文名是内存管理单元,它是中央处理器(CPU)中用来管理虚拟存储器.物理存储器的控制线路,同时也负责虚拟地址映射为物理地址,以及提供硬件机制的内存访问授权,多用户多进程操作系统. 2.MMU的作用: (1)权限管理 (2)地址映射 3.权限管理简介 不同时刻只有一个程序段再跑,都有自己…
1,基本概念 一个程序运行时没必要全部都同时装入内存,只需要把当前需要运行的部分装入内存即可,这样就使得一个大程序可以在较小的内存中运行,也使得内存中可以同时装入更多的程序并发执行,从用户角度看,该系统拥有的内存容量比实际的内存容量大的多,这样的存储器称为虚拟存储器.虚拟存储器从逻辑上对内存容量进行了扩充,用户看到的大容量是虚的. 在没有使用虚拟存储器的机器上,地址被直接送到内存总线上,使具有相同地址的物理存储器被读写:而在使用了虚拟存储器的情况下,虚拟地址不是被直接送到内存地址总线上,而是送到…
内存管理子系统是linux内核最核心最重要的一部分,内核的其他部分都需要在内存管理子系统的基础上运行.而对其初始化是了解整个内存管理子系统的基础.对相关数据结构的初始化是从全局启动例程start_kernel开始的.本文详细描述了从bootloader跳转到linux内核内存管理子系统初始化期间所做的操作,从而来加深对内存管理子系统知识的理解和掌握. 内核的入口是stext,这是在arch/arm/kernel/vmlinux.lds.S中指定的.而符号stext是在arch/arm/kerne…
在内存管理的上下文中, 初始化(initialization)可以有多种含义. 在许多CPU上, 必须显式设置适用于Linux内核的内存模型. 例如在x86_32上需要切换到保护模式, 然后内核才能检测到可用内存和寄存器. 而我们今天要讲的boot阶段就是系统初始化阶段使用的内存分配器. 1 前景回顾 1.1 Linux内存管理的层次结构 Linux把物理内存划分为三个层次来管理 层次 描述 存储节点(Node) CPU被划分为多个节点(node), 内存则被分簇, 每个CPU对应一个本地物理内…
linux kernel集中了世界顶尖程序猿们的编程智慧,犹记操作系统课上老师讲操作系统的四大功能:进程调度 内存管理 设备驱动 网络.从事嵌入式软件开发工作,对设备驱动和网络接触的比較多. 而进程调度和内存管理接触少之有少.很多其它的是敬而远之. 我的理解.想在内核开发上有更深层次的技术进步.应该对内核的内存管理进程调度等深层技术有一定的理解.只是这2块内容是内核最核心的部分.实际内核开发工作中涉及较少,非常少有问题点来切入进去进行研究,网上也没有系统的资料进行解说,学习起来谈何easy. 本…
众所周知,内存管理是Linux内核中最基础,也是相当重要的部分.理解相关原理,不管是对内存的理解,还是对大家写用户态代码都很有帮助.很多书上.很多文章都写了相关内容,但个人总觉得内容太复杂,不是太容易理解,这里想用我自己理解的简单的方式来描述,希望能有所帮助.本篇文章由圆柱模板博主原创,转载需注明! 内存的分配     大家写代码时,应该都会分配内存,不同语言,层次不同,使用的接口不同,不管使用哪种方式,在Linux系统中,基本上都会调用到C库的malloc接口,那就从malloc分配内存开始.…
什么是内存管理 ? 首先内存管理管理的主要对象是虚拟内存,但是虚拟内存对应的映射主要为物理内存,其次也可能通过交换空间把虚拟内存与硬盘映射起来,既然如此,那我们先了解物理内存的管理. 对于物理内存而言,首先我们需要知道的是,linux x86体系结构中内核主要处于 0 - 1G(物理地址)中.而物理内存是有限的.但我们又要为每个程序提供相互独立且连续的内存空间.正因如此我们引出了虚拟内存. 什么是虚拟内存? 虚拟内存 是 段寄存器:段变址寄存器 结合的结果.但是仅仅依赖这两个寄存器并不能得到什么…
文章每周持续更新,各位的「三连」是对我最大的肯定.可以微信搜索公众号「 后端技术学堂 」第一时间阅读(一般比博客早更新一到两篇) 今天来带大家研究一下Linux内存管理.对于精通 CURD 的业务同学,内存管理好像离我们很远,但这个知识点虽然冷门(估计很多人学完根本就没机会用上)但绝对是基础中的基础,这就像武侠中的内功修炼,学完之后看不到立竿见影的效果,但对你日后的开发工作是大有裨益的,因为你站的更高了. 文中所有示例图都是我亲手画的,画图比码字还费时间,但是看图理解比文字更直观,需要高清示例图…
内存管理 Linux内核使用段页式内存管理方式. 内存池 物理页:物理空闲内存被划分为固定大小(4k)的页 内存池:所有空闲物理页组成内存池,以页为单位进行分配回收.并通过位图记录了每个物理页是否空闲,位图下标对应物理页号. 分页内存管理 虚拟页:进程虚地址空间被划分为固定大小(4k)的页 分页内存管理:通过页目录和页表维护进程虚拟页号到物理页号的映射.设置好页目录.页表之后,虚拟地址到物理地址之间的转换通过内存管理单元(MMU)自动完成转换.若访问的虚拟页没有实际分配物理页,则放生缺页中断,内…
7.1 内存管理单元MMU介绍 7.1.1 S3C2410/S3C2440 MMU特性 负责虚拟地址到物理地址的映射,并提供硬件机制的内存访问权限检查 特性: 与ARM V4兼容的映射长度.域.访问权限检查机制 4种映射长度:段(1MB).大页(64kb).小页(4kb).极小页(1kb) 对每段都可以设置访问权限 大页.小页的每个子页(被映射页的1/4)都可以单独设置访问权限 硬件实现的16个域 指令TLB(含64个条目).数据TLB(含64个条目) 硬件访问页表(地址映射.权限检查由硬件自动…
内存管理单元(MMU)和协处理器CP15介绍内存管理单元(MMU)介绍嵌入式系统中,存储系统差别很大,可包含多种类型的存储器件,如FLASH,SRAM,SDRAM,ROM等,这些不同类型的存储器件速度和宽度等各不相同:在访问存储单元时,可能采取平板式的地址映射机制对其操作,或需要使用虚拟地址对其进行读写:系统中,需引入存储保护机制,增强系统的安全性.为适应如此复杂的存储体系要求,ARM处理器中引入了存储管理单元来管理存储系统.一内存管理单元(MMU)概述在ARM存储系统中,使用MMU实现虚拟地址…
本篇基本是韦东山书上的 一.内存管理单元MMU介绍 内存管理单元简称MMU,它负责虚拟地址到物理地址的映射,并提供硬件机制的内存访问权限检查.MMU使得每个用户进程拥有自己独立的地址空间,并通过内存访问权限的检查保护每个进程所用的内存不被其他进程破坏. 重点就在于地址映射:页表的结构与建立.映射的过程. 1.S3C2440 MMU地址变换过程  1)地址的分类一个程序在运行之前,没有必要全部装入内存,仅需要将那些要运行的部分先装入内存,其余部分在用到时从磁盘载入,当内存不足时,再将暂时不用的部分…
现代操作系统普遍采用虚拟内存管理(Virtual Memory Management)机制,这需要处理器中的MMU(Memory Management Unit,内存管理单元)提供支持,本节简要介绍MMU的作用. 首先引入两个概念,虚拟地址和物理地址.如果处理器没有MMU,或者有MMU但没有启用,CPU执行单元发出的内存地址将直接传到芯片引脚上,被内存芯片(以下称为物理内存,以便与虚拟内存区分)接收,这称为物理地址(Physical Address,以下简称PA),如下图所示. 图 17.5. …
3.1 MMU介绍 3.1.1 MMU 特性 内存管理单元(Memory Management Unit)简称MMU,它负责虚拟地址到物理地址的映射,并提供硬件机制的内存访问权限检查.现在的多用户多进程操作系统通过 MMU 使得各个用户进程都拥有自己独立的地址空间. 地址映射功能使得各进程拥有“看起来”一样的地址空间,内存访问权限的检查可以保护每个进程所用的内存不会被其他进程破坏. S3C2440/2410 有如下特性: 与 ARM V4 兼容的映射长度.域.访问权限检查机制 4种映射长度:段(…
本章目标:     了解虚拟地址和物理地址的关系:     掌握如何通过设置MMU来控制虚拟地址到物理地址的转化:     了解MMU的内存访问权限机制:     了解TLB.Cache.Write buffer的原理,使用时的注意事项:     通过实例深刻掌握上述要点: 7.1 内存管理单元MMU介绍 7.1.1 S3C2410/S3C2440 MMU特性 内存管理单元(Memory Management Unit),简称MMU,它负责虚拟地址到物理 地址的映射,并提供硬件机制的内存访问权限…
原文:Linux内存管理:ARM Memory Layout以及mmu配置 在内核进行page初始化以及mmu配置之前,首先需要知道整个memory map. 1. ARM Memory Layout PAGE_OFFSET  Start address of Kernel space  0xC000_0000 lowmem  Kernel direct-mapped RAM region (1:1 mapping)  Maximum 896M HIGH_MEMORY  End address…
在计算机早期的时候,计算机是无法将大于内存大小的应用装入内存的,因为计算机读写应用数据是直接通过总线来对内存进行直接操作的,对于写操作来说,计算机会直接将地址写入内存:对于读操作来说,计算机会直接读取内存的数据. 但是随着软件的不断膨胀和移动应用的到来,一切慢慢变了. 我们想要手机既能够运行微信,同时又能够运行 QQ 音乐,还希望能够聊微博.刷知乎以及看股票.如果我们的手机内存只有 1G,那么显然是无法满足这些应用的,因为微信的后台程序都占用 1G 多内存了.那么就会有人说,把内存容量提高不就行…
一.内存管理基本知识 1.S3C2440最多会用到两级页表:以段的方式进行转换时只用到一级页表,以页的方式进行转换时用到两级页表.页的大小有三种:大页(64KB),小页(4KB),极小页(1KB).条目也称为"描述符",有:段描述符,大页描述符,小页描述符,极小页描述符——他们保存大页,小页,极小页的起始物理地址:粗页表描述符,细页表描述符——他们保存二级页表的物理地址. 2.一级页表描述符的最低两位,可分为以下四种情况: (1).0b00:无效. (2).0b01:粗页表. (3).…
Linux系统中的物理存储空间和虚拟存储空间的地址范围分别都是从0x00000000到0xFFFFFFFF,共4GB,但物理存储空间与虚拟存储空间布局完全不同.Linux运行在虚拟存储空间,并负责把系统中实际存在的远小于4GB的物理内存根据不同需求映射到整个4GB的虚拟存储空间中.Linux主要工作在保护模式下.80X86从逻辑地址到物理地址变换中经过了两个阶段.第一阶段使用分段机制把程序的逻辑地址变换成处理器可寻址内存空间(称为线性地址空间)中的地址.第二阶段的分页机制把线性地址转换成物理地址…
内核版本:linux-2.6.11 Linux在加载一个可执行程序的时候做了种种复杂的工作,内存分配是其中非常重要的一环,作为一个linux程序员必然会想要知道这个过程到底是怎么样的,内核源码会告诉你这一切. 线性区 一个可执行程序,是经过编译器处理后的遵守一定规则的数据.符号表和指令序列的组合,当linux加载一个可执行程序的时候,会为其创建一个新的进程,其对应的进程描述符task_struct中会保存许多资源的描述符,其中的mm_struct就是这个进程的内存描述符,用来管理该进程拥有的所有…
一 为什么需要使用虚拟内存 大家都知道,进程需要使用的代码和数据都放在内存中,比放在外存中要快很多.问题是内存空间太小了,不能满足进程的需求,而且现在都是多进程,情况更加糟糕.所以提出了虚拟内存,使得每个进程用于3G的独立用户内存空间和共享的1G内核内存空间.(每个进程都有自己的页表,才使得3G用户空间的独立)这样进程运行的速度必然很快了.而且虚拟内存机制还解决了内存碎片和内存不连续的问题.为什么可以在有限的物理内存上达到这样的效果呢? 二 虚拟内存的实现机制 首先呢,提一个概念,交换空间(sw…
本文以32位机器为准,串讲一些内存管理的知识点. 1. 虚拟地址.物理地址.逻辑地址.线性地址 虚拟地址又叫线性地址.linux没有采用分段机制,所以逻辑地址和虚拟地址(线性地址)(在用户态,内核态逻辑地址专指下文说的线性偏移前的地址)是一个概念.物理地址自不必提.内核的虚拟地址和物理地址,大部分只差一个线性偏移量.用户空间的虚拟地址和物理地址则采用了多级页表进行映射,但仍称之为线性地址. 2. DMA/HIGH_MEM/NROMAL 分区 在x86结构中,Linux内核虚拟地址空间划分0~3G…
一.内存管理概念 1. 物理内存概念(Physical Memory Address)     PC上有三条总线,分别是数据总线.地址总线和控制总线.32位CPU的寻址能力为4GB(2的32次方)个字节.用户最多可以使用4GB的真实物理内存.PC中很多设备都提供了自己的设备内存.这部分内存会映射到PC的物理内存上,也就是读写这段物理地址,其实读写的是设备内存地址,而不是物理内存地址. 2. 虚拟内存概念     虽然可以寻址4GB的内存,但是PC中往往没有如此多的真实物理内存.操作系统和硬件(主…
一.几个基本的概念 1.存储器的金字塔结构 存储器从下之上依次是磁盘/flash.DRAM(内存).L2-cache.L1-cache.寄存器,越在上面的存储器访问速度越快,同时价格也越昂贵,每一级都可以看做是下一级的缓存,内存是磁盘的缓存,cache是内存的缓存. 2.地址空间 地址空间就是一个非负正数的有序集合,如果是连续的即线性地址空间,从硬件的角度看就是处理器所能访问的存储器空间,与地址线的位数相关,物理地址空间就是物理存储器的访问空间(按字节访问) 3.页 将物理内存和虚拟内存按页来划…
让我们来回顾一下历史,在早期的计算机中,程序是直接运行在物理内存上的.换句话说,就是程序在运行的过程中访问的都是物理地址.如果这个系统只运行一个程序,那么只要这个程序所需的内存不要超过该机器的物理内存就不会出现问题,我们也就不需要考虑内存管理这个麻烦事了,反正就你一个程序,就这么点内存,吃不吃得饱那是你的事情了.然而现在的系统都是支持多任务,多进程的,这样CPU以及其他硬件的利用率会更高,这个时候我们就要考虑到将系统内有限的物理内存如何及时有效的分配给多个程序了,这个事情本身我们就称之为内存管理…
一 页 内核把物理页作为内存管理的基本单位:内存管理单元(MMU)把虚拟地址转换为物理 地址,通常以页为单位进行处理.MMU以页大小为单位来管理系统中的也表. 32位系统:页大小4KB 64位系统:页大小8KB 内核用相应的数据结构表示系统中的每个物理页: <linux/mm_types.h> struct page {} 内核通过这样的数据结构管理系统中所有的页,因此内核判断一个页是否空闲,谁有拥有这个页 ,拥有者可能是:用户空间进程.动态分配的内核数据.静态内核代码.页高速缓存…… 系统中…