[atAGC034F]RNG and XOR】的更多相关文章

令$N=2^{n}$先将$\forall 0\le i<N,a_{i}$除以$\sum_{i=0}^{N-1}a_{i}$,即变为概率 令$f_{i}$表示$i$的答案(第一次变成$i$的期望步数),则$$\begin{cases}f_{0}=0\\f_{i}=\left(\sum_{j=0}^{N-1}a_{j}f_{i\oplus j}\right)+1&(1\le i<N)\end{cases}$$定义$\bigoplus$为异或卷积,令$A(x)$和$F(x)$分别为对应序列的…
Description 你有一个随机数生成器,它会以一定的概率生成[0,2^N-1]中的数,每一个数的概率是由序列A给定的,Pi=Ai/sum(Ai) 现在有一个初始为0的数X,每一轮随机生成一个数v,将X变成X xor v 求X变成0~2^N-1的期望轮数 答案对998244353取模 N<=18,Ai<=1000 Solution 不妨反过来做,f[i]为i到0的期望轮数,显然等价 易得i>0, \[f[i]=1+\sum f[i\ xor\ j]p[j]\] 1移到左边来 \[f[…
正题 题目链接:https://www.luogu.com.cn/problem/AT4996 题目大意 给出一个\(0\sim 2^n-1\)下标的数组\(p\),\(p_i\)表示有\(p_i\)的权重概率选择\(i\). 开始有一个\(x=0\),每次选择一个数字\(y\)让\(x=x\ xor\ y\) 对于每个\(i\)求期望多久后第一次变成\(i\). \(1\leq n\leq 18\) 解题思路 搞一个异或卷积的生成函数,先搞出概率的函数\(P\). 然后设\(E\)表示答案的函…
题目   点这里看题目. 分析   第一步可以将\(A\)数组转化成概率\(P(j)\):每一步操作异或\(j\)的概率.   接着发现,\(x\)从\(0\)变成\(i\)的期望等于\(x\)从\(i\)变成\(0\)的期望.   这样我们的起点虽然不一样,但是终点就是一样的.这样我们可以套用随机游走的模型:   \(f(i)\):从\(i\)为起点变成\(0\)的期望.   边界条件为\(f(0)=0\),剩下的转移为: \[\begin{aligned} &f(i)=1+\sum_{j=0…
目录 @description@ @solution@ @accepted code@ @details@ @description@ 给定一个值域在 [0, 2^N) 的随机数生成器,给定参数 A[0...2^N-1]. 该生成器有 \(\frac{A_i}{\sum A}\) 的概率生成 i,每次生成都是独立的. 现在有一个 X,初始为 0.每次操作生成一个随机数 v 并将 X 异或 v. 对于每一个 i ∈ [0, 2^N),求期望多少次操作 X 第一次等于 i. 原题题面. @solut…
Atcoder 题面传送门 & 洛谷题面传送门 tsc 考试前 A 的题了,结果到现在才写这篇题解--为了 2mol 我已经一周没碰键盘了,现在 2mol 结束算是可以短暂的春天 短暂地卷一会儿 OI 了(( u1s1 写这篇题解的时候我连题都快忘了... 首先设 \(b_i=\dfrac{A_i}{\sum\limits_{j=0}^{2^n-1}A_j}\),其次碰到这种期望类的题目我们考虑套路地设 \(p_i\) 表示异或得到 \(i\) 的概率,那么有 \(p_i=\sum\limits…
大米饼正式退役了,OI给我带来很多东西 我会的数学知识基本都在下面了 博客园的评论区问题如果我看到了应该是会尽力回答的... 这也是我作为一个OIer最后一次讲课的讲稿 20190731 多项式乘法 FFT 基本概念 1.多项式的两种表达(拉格朗日插值法) 多项式:\(A(x) = \sum_{i=0}^{n-1}a_ix^i\),最高项次数为\(n-1\),次数界为\(n\) \((a_0,\cdots,a_{n-1})\)为多项式的系数表达, \((x_0,y_0),\cdots,(x_{n…
AGC034 刷了那么久AtCoder我发现自己还是只会ABCE(手动再见 A - Kenken Race 大意是一个横列,每个点可以跳一步或者跳两步,每个格子是空地或者石头,要求每一步不能走到石头或者有人的格子上,求是否能把\(A\)移动到\(C\),\(B\)移动到\(D\),\(A < C,B < D,A < B\) 看\(A\)到\(C\)和\(B\)到\(D\)的路上有没有两个连在一起的石头,有就不合法 如果\(A\)需要越过\(B\),则看\(B\)到\(D\)的路上有没有三…
Given a non-empty array of numbers, a0, a1, a2, … , an-1, where 0 ≤ ai < 231. Find the maximum result of ai XOR aj, where 0 ≤ i, j < n. Could you do this in O(n) runtime? Example: Input: [3, 10, 5, 25, 2, 8] Output: 28 Explanation: The maximum resul…
题目链接 XOR 游戏 Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total Submission(s): 256    Accepted Submission(s): 86 Problem Description众所周知,度度熊喜欢XOR运算[(XOR百科)](http://baike.baidu.com/view/674171.htm). 今天,它发明了一种XOR新游戏…