\(\mathcal{Description}\)   Link & 双倍经验.   给定 \(n\) 个区间 \([a_i,b_i)\)(注意原题是闭区间,这里只为方便后文描述),求 \(\{c_n\}\) 的个数,使得: \(\forall i~~~~c_i=0\lor c_i\in[a_i,b_i)\). \(\forall i<j~~~~c_i\not=0\land c_j\not=0\Rightarrow c_i<c_j\).   对 \(10^9+7\) 取模.   \(n…
洛谷题目链接:[APIO2016]划艇 题目描述 在首尔城中,汉江横贯东西.在汉江的北岸,从西向东星星点点地分布着 \(N\) 个划艇学校,编号依次为 \(1\) 到 \(N\).每个学校都拥有若干艘划艇.同一所学校的所有划艇颜色相同,不同的学校的划艇颜色互不相同.颜色相同的划艇被认为是一样的.每个学校可以选择派出一些划艇参加节日的庆典,也可以选择不派出任何划艇参加.如果编号为 iii 的学校选择派出划艇参加庆典,那么,派出的划艇数量可以在 \(a_i\)​ 至 \(b_i\) 之间任意选择(\…
题面 传送门 题解 首先区间个数很少,我们考虑把所有区间离散化(这里要把所有的右端点变为\(B_i+1\)代表的开区间) 设\(f_{i,j}\)表示考虑到第\(i\)个学校且第\(i\)个学校必选,这个学校选择的数在离散后的第\(j\)个区间内,方案数是多少 怎么转移呢,我们考虑枚举上一个不在第\(j\)个区间的学校\(k\),设\([k+1,i]\)中有\(a\)个学校是可以选在第\(j\)个区间的,且第\(j\)个区间的长度为\(b\),然后暴力枚举这\(m\)个数中有\(q\)个选了,那…
题面传送门 一道难度中等的 \(dp\)(虽然我没有想出来/kk). 首先一眼 \(dp_{i,j}\) 表示考虑到第 \(i\) 个学校,第 \(i\) 个学校派出了 \(j\) 个划艇的方案数,转移也异常显然,枚举上一个派出游艇的学校以及它派出的划艇个数,那么有 \(dp_{i,j}=\sum\limits_{k<i}\sum\limits_{l<j}dp_{k,l}\),这样暴力复杂度是 \(n^2A^2\),其中 \(A=\max\{a_i,b_i\}\),可以使用前缀和优化,但照样不…
「洛谷P1043」数字游戏 日后再写 代码 /*#!/bin/sh dir=$GEDIT_CURRENT_DOCUMENT_DIR name=$GEDIT_CURRENT_DOCUMENT_NAME pre=${name%.*} g++ -O2 $dir/$name -o $pre -g -Wall -std=c++11 if test $? -eq 0; then gnome-terminal -x bash -c "time $dir/$pre;echo;read;" fi*/ #…
\(\mathscr{Description}\)   Link.   给定字符串 \(S\),求 \(S\) 的每个前缀的最小表示法起始下标(若有多个,取最小的).   \(|S|\le3\times10^6\). \(\mathscr{Solution}\)   注意到一个显然的事实,对于某个前缀 \(S[:i]\) 以及两个起始下标 \(p,q\),若已有 \(S[p:i]<S[q:i]\),那么在所有的 \(j>i\) 中,都有 \(S[p:j]<S[q:j]\).换言之,最终…
\(\mathcal{Description}\)   OurOJ & 洛谷 P4372(几乎一致)   设计一个排序算法,设现在对 \(\{a_n\}\) 中 \([l,r]\) 内的元素排序,则重复冒泡排序零次或多次,直到存在某个位置 \(p\in[l,r)\),满足 \(\max_{i=l}^p\{a_i\}<\min_{i=p+1}^r\{a_i\}\),则递归入 \([l,p]\) 和 \((p,r]\),直到区间长度为 \(1\) 时停止.求所有冒泡排序所操作的区间长度之和.  …
\(\mathcal{Description}\)   Link.(洛谷上这翻译真的一言难尽呐.   给定一个 \(n\) 个点 \(m\) 条边的无向图,一条边 \((u,v,a,b)\) 表示从 \(u\) 到 \(v\) 的代价为 \(a\),\(v\) 到 \(u\) 的代价为 \(b\).求从结点 \(1\) 开始的,经过每个点至少一次,每条边恰好一次,最后回到结点 \(1\) 的路径,使得每条边代价的最大值最小.   \(n,a,b\le10^3\),\(m\le2\times10^…
题目链接 [洛谷] [BZOJ]没有权限号嘤嘤嘤.题号:3545 题解 窝不会克鲁斯卡尔重构树怎么办??? 可以离线乱搞. 我们将所有的操作全都存下来. 为了解决小于等于\(x\)的操作,那么我们按照长度来排一个序. 如果询问和加边长度相同,这加边优先. 对于每一个连通块进行权值线段树. 权值线段树解决\(k\)大的问题. 每一次合并,并查集判联通,线段树暴力合并. 时间复杂度\(O(nlogn)\). 代码 #include <bits/stdc++.h> using namespace s…
题目链接 [BZOJ] [洛谷] 题解 首先我们需要对这个式子进行化简,否则对着这么大一坨东西只能暴力... \[F_i=\sum_{j<i} \frac{q_iq_j}{(i-j)^2}-\sum_{j>i} \frac{q_iq_j}{(i-j)^2}\] 根据题目给出的定义,带入\(E\)中 \[E_i=\sum_{j=1}^{i-1}\frac{q_j}{(i-j)^2}-\sum_{j=i+1}^{n}\frac{q_j}{(j-i)^2}\] 形式稍微改变了一下,本质一样 需要处理…
题目链接 [洛谷] 题解 很明显是要用线段树合并的. 对于当前的每一个连通块都建立一个权值线段树. 权值线段树处理操作中的\(k\)大的问题. 如果需要合并,那么就线段树暴力合并,时间复杂度是\(nlogn\),均摊下来就是\(logn\). 判断联通性的问题就用并查集来解决. 如果在同一个联通块里,就不能合并,否则会出一点问题. 代码 #include <bits/stdc++.h> using namespace std; const int N = 3000000 + 6; int rt…
题目链接 [洛谷] 题解 来做一下水题来掩饰ZJOI2019考炸的心情QwQ. 很明显可以线段树. 维护两个值,\(Lazy\)懒标记表示当前区间是否需要翻转,\(s\)表示区间还有多少灯是亮着的. 那么每一次翻转,\(s\)就变成了\(n-s\),\(n\)表示区间内所有灯的数量. 线段树维护一下就可以了. 代码 #include <bits/stdc++.h> using namespace std; const int N = 100000 + 6; int n, m; namespac…
题目链接 [洛谷传送门] 题解 按位处理. 把每一位对应的图都处理出来 然后单调栈处理一下就好了. \(and\)操作处理全\(1\). \(or\)操作处理全\(0\). 代码 #include <bits/stdc++.h> #define gc getchar using namespace std; typedef long long ll; const int N = 1000 + 4; const int P = 1e9 + 7; const int BIT = 31; int n…
题目链接 [洛谷传送门] 题解 很显然,当这个点不是割点的时候,答案是\(2*(n-1)\) 如果这个点是割点,那么答案就是两两被分开的联通分量之间求组合数. 代码 #include <bits/stdc++.h> #define ll long long using namespace std; const int N = 500005; struct edge { int to, nt; } E[N << 1]; int dfn[N], low[N], H[N], sz[N];…
题目链接 [洛谷传送门] 题解 矩阵面积的并模板.(请求洛谷加为模板题) 很明显是要离散化的. 我们将矩阵与\(x\)轴平行的两个线段取出来.并且将这两个端点的\(x1\)和\(x2\)进行离散化. 因为每一次我们都会对当前的这一层的某一段线段进行操作,那么就用权值线段树维护是否存在. 这个只是矩阵面积的并. 还有加强版:[HDU 1542] 还有矩阵面积的交. 代码 #include <bits/stdc++.h> #define gc getchar #define lc (nod <…
洛谷题号:P1516 出处:? 主要算法:数论 难度:4.4 思路分析: 典型的同余方程.由于是纬线,绕一圈是可以绕回来的,所以是可以取模的. 阅读题目,很容易得到同余方程$ x + tm ≡ y + tn (mod\ L)$ 于是我们可以通过Exgcd来求解.先转化为不定方程 $ x + tm - y - tn = sL $ 整理得 $ (m - n)t - Ls = y - x $ 设 $a = n - m, b = L, c = x - y$,代入可得 $ -at - bs = -c $,…
题目链接 [BZOJ传送门] [洛谷传送门] 题目大意 单点修改,区间查询有多少种数字. 解法1--树套树 可以直接暴力树套树,我比较懒,不想写. 稍微口胡一下,可以直接来一个树状数组套主席树,也就是待修的主席树. 然后查询的时候,两个根节点减一下就可以了. 解法2--带修莫队 这是带修莫队的模板题. 最简单的莫队是是一个二元组\((l,r)\),这里引入了一个新的参数,变成了三元组\((l,r,t)\),\(t\)所表示的是在这个查询最前面的哪一个修改的编号. 然后我们这个\(t\)当做第三关…
题目链接 [洛谷传送门] [LOJ传送门] 题目大意 给定一棵树,每次选取树上的一个点集,要求点集中的每个点不能是另一个点的祖先,选出点集的代价为点集中权值最大点的权值,问将所有点都选一遍的最小代价为多少. (题目大意来自洛谷题解某一篇) 题解 分析一下这一道题目. 首先,因为不能存在祖先关系,那么在一条链上的所有点一定是要分开来取的. 那么很显然,根必须一个点一个集合,那么在递归子树,同样的操作,把子树独立的递归,然后合并子树内的最大值. 代码 #include <bits/stdc++.h>…
题目链接 [洛谷传送门] [LOJ传送门] 题目大意 让你求区间异或和前\(k\)大的异或和的和. 正解 这道题目是Blue sky大佬教我做的(祝贺bluesky大佬进HA省A队) 我们做过某一些题目,非常的相似.[超级钢琴]还有[最小函数值]还有[最大异或和] 感觉这一些题目拼在一起就变成了这一道水题. 首先我们需要预处理出,所有区间的异或最大值. 这个东西可以用可持久化\(01trie\)实现,那么我们思考一下如何实现查询第\(k\)大的值的操作. 以下是关于01字典树中查询第k大的操作的…
题目链接 BZOJ/洛谷 题目描述 致力于建设全国示范和谐小村庄的H村村长dadzhi,决定在村中建立一个瞭望塔,以此加强村中的治安. 我们将H村抽象为一维的轮廓.如下图所示: 我们可以用一条山的上方轮廓折线\((x_1,y_1),(x_2,y_2)-(x_n,y_n)\)来描述H村的形状,这里\(x_1 < x_2 < -< x_n\).瞭望塔可以建造在\([x_1,x_n]\)间的任意位置,但必须满足从瞭望塔的顶端可以看到H村的任意位置.可见在不同的位置建造瞭望塔,所需要建造的高度是…
前言 在考场被这个题搞自闭了,那个时候自己是真的太菜了.qwq 现在水平稍微高了一点,就过来切一下这一道\(DP\)经典好题. 附加一个题目链接:[洛谷] 正文 虽然题目非常的简短,但是解法有很多. 我按照时间复杂度来写一下一些做法. 博主只考虑了一些基于时间的做法,其他的再补.. 时间复杂度:\(O(t^2n)\) 借鉴sooke大佬的想法,把问题抽象成一个数轴. 每一个人上车的时间就是在数轴上可能重合的一个点,一辆公交车抽象成在数轴上的一条长度为m的线段进行一次覆盖. 因为考虑到上下车时间忽…
洛谷P3205 [HNOI2010]合唱队 题目: 题目描述 为了在即将到来的晚会上有更好的演出效果,作为 A 合唱队负责人的小 A 需要将合唱队的人根据他们的身高排出一个队形.假定合唱队一共 n 个人,第 i 个人的身高为 hi​ 米(1000≤hi≤2000),并已知任何两个人的身高都不同.假定最终排出的队形是 A 个人站成一排,为了简化问题,小 A 想出了如下排队的方式:他让所有的人先按任意顺序站成一个初始队形,然后从左到右按以下原则依次将每个人插入最终棑排出的队形中: 第一个人直接插入空…
\(\mathcal{Descrtiption}\)   给定 \(\{a_n\}\),现进行 \(m\) 次操作,每次操作随机一个区间 \([l,r]\),令其中元素全部变为区间最大值.对于每个 \(i\),求所有可能操作方案最终得到的 \(a_i\) 之和.答案模 \((10^9+7)\).   \(n,q\le400\). \(\mathcal{Solution}\)   那什么我懒得写题解了就把草稿贴上来好了.( \[f(i,l,r,x):=\text{the operating way…
\(\mathcal{Description}\)   Link.   给一个 \(n\times n\) 的网格图,每个点是空格或障碍.\(q\) 次询问,每次给定两个坐标 \((r_1,c_1),(r_2,c_2)\),问最大的正方形边长 \(k\),满足 \(k\) 是奇数,且中心点在 \((r_1,c_1)\) 的正方形能够移动成为中心点在 \((r_2,c_2)\) 的正方形.   \(n\le1000\),\(q\le3\times10^5\). \(\mathcal{Solutio…
\(\mathcal{Description}\)   Link.   给定一个 \(n\) 个点 \(m\) 条边的无向图(不保证联通),求有序三元点对 \((s,c,f)\) 的个数,满足 \(s,c,f\) 互不相同,且存在一条从 \(s\) 到 \(c\) 再到 \(f\) 的简单路径.   \(n\le10^5\),\(m\le2\times10^5\). \(\mathcal{Solution}\)   首先考虑这样一个问题,若 \(s,c,f\) 在同一点双中,是否一定满足条件.…
\(\mathcal{Description}\)   Link.   给定 \(n,m,k\),求 \(x\in [1,n]\cap\mathbb N,y\in [1,m]\cap \mathbb N\),且最简分数 \(\frac{x}{y}\) 在 \(k\) 进制下是纯循环小数(包括整数)的 \((x,y)\) 数量.   \(n,m\le10^9\),\(k\le2\times10^3\). \(\mathcal{Solution}\)   当你举几个十进制的纯循环小数就不难发现规律了…
\(\mathcal{Description}\)   Link.   给定升序序列 \(\{x_n\}\) 以及整数 \(k\),在 \(\{x_n\}\) 中选出恰 \(k\) 对 \((x_i,x_j)\),使得不存在某个值出现次数多于一次,并最小化 \(\sum|x_i-x_j|\). \(\mathcal{Solution}\)   告诉我,你有一个错误的贪心 owo!   显然 \((x_i,x_j)\) 是相邻的两个数.令 \(a_i=x_{i+1}-x_i\),问题转化为选 \(…
\(\mathcal{Description}\)   Link.   给定排列 \(\{p_n\}\) 和 \(m\) 次局部排序操作,求操作完成后第 \(q\) 位的值.   \(n,m\le10^5\). \(\mathcal{Solution}\)   跟这道的核心套路(?)差不多.   若序列是 \(01\) 序列,局部排序就相当于把 \(1\) 扔到一端,把 \(0\) 扔到另一端,只需要知道区间 \(1\) 的个数就好.   二分答案 \(mid\),将排列中不小于 \(mid\)…
\(\mathcal{Description}\)   Link.   (概括得说不清话了还是去看原题吧 qwq. \(\mathcal{Solution}\)   首先剔除回文串--它们一定对答案产生 \(1\) 的贡献.我们称一个句子是"正序"的,当且仅当句子的所有单词同时满足自己的字典序不小于翻转后的字典序:"逆序"则当且仅当句子的所有单词同时满足自己的字典序严格大于翻转后的字典序.从这条显眼的性质入手:   此外观察者发现,对每一行(列)来说,按照确定后的阅…
\(\mathcal{Description}\)   Link.   有 \(n\) 张卡牌,第 \(i\) 张的权值 \(w_i\in\{1,2,3\}\),且取值为 \(k\) 的概率正比于 \(p_{i,k}\).依照此规则确定权值后,你不停抽卡,每次抽到第 \(i\) 张卡牌的概率正比于 \(w_i\),直到所有卡都被抽过至少一次.   此后,记 \(t_i\) 表示第 \(i\) 张牌第一次被抽到的时间.给定 \(n-1\) 条形如 \(\lang u,v\rang\) 的限制,表示…