tensorboard使用方法】的更多相关文章

http://blog.csdn.net/u010099080/article/details/77426577…
启动命令: tensorboard --logdir="tensorboard" 启动后显示 Starting TensorBoard b'47' at http://0.0.0.0:6006 ... 因为 win10 将 localhost 解析为 ipv6地址 [::1],所以无法使用  http://0.0.0.0:6006 查看 tensorboard 解决方法: use chromehttp://localhost:6006 tensorboard 简介 http://www…
解决在win系统下使用DOS命令开启TensorBoard的问题及方法步骤: TensorBoard是TensorFlow下的一个可视化的工具,能够帮助研究者们可视化训练大规模神经网络过程中出现的复杂且不好理解的运算,展示训练过程中绘制的图像.网络结构等. 最近本人在学习这方面的内容,然而出现了一些问题,我的问题是在完成相应代码准备好可视化数据后无法启动tensorboard,如下是网上找的测试可视化的代码(至于如何准备可视化数据这里不做介绍,看参见:(英文)https://www.tensor…
TensorBoard是TensorFlow下的一个可视化的工具,能够帮助研究者们可视化训练大规模神经网络过程中出现的复杂且不好理解的运算,展示训练过程中绘制的图像.网络结构等. 最近本人在学习这方面的内容,然而出现了一些问题,我的问题是在完成相应代码准备好可视化数据后无法启动tensorboard,如下是网上找的测试可视化的代码(至于如何准备可视化数据这里不做介绍,看参见:(英文)https://www.tensorflow.org/get_started/summaries_and_tens…
一.TensorFlow高层次机器学习API (tf.contrib.learn) 1.tf.contrib.learn.datasets.base.load_csv_with_header 加载csv格式数据 2.tf.contrib.learn.DNNClassifier 建立DNN模型(classifier) 3.classifer.fit 训练模型 4.classifier.evaluate 评价模型 5.classifier.predict 预测新样本 完整代码: from __fut…
import tensorflow.compat.v1 as tf import os os.environ["CUDA_VISIBLE_DEVICES"] = "-1"tf.disable_v2_behavior()a = tf.constant(4, name = "input_a")b = tf.constant(2, name = "input_b")c = tf.multiply(a, b, name = "…
前言 本文接着上一篇继续来聊Tensorflow的接口,上一篇中用较低层的接口实现了线性模型,本篇中将用更高级的API--tf.estimator来改写线性模型. 还记得之前的文章<机器学习笔记2 - sklearn之iris数据集>吗?本文也将使用tf.estimator改造该示例. 本文代码都是基于API版本r1.4.本文中本地开发环境为Pycharm,在文中不再赘述. tf.estimator 内置模型 比起用底层API"较硬"的编码方式,tf.estimator的在…
看代码: import tensorflow as tf import numpy as np #构造输入数据(我们用神经网络拟合x_data和y_data之间的关系) x_data = np.linspace(-1,1,300)[:, np.newaxis] #-1到1等分300份形成的二维矩阵 noise = np.random.normal(0,0.05, x_data.shape) #噪音,形状同x_data在0-0.05符合正态分布的小数 y_data = np.square(x_da…
ubuntu17.04中启动tnsorboard过程 首先激活tensorboard,找到根目录文件(注:跟tensorflow文件同级)找到tensorboard文件的main.py文件 然后找到程序员运行后的日志文件(或者是要查看可视化数据流图的日志文件)路径 如下命令即可激活tensorboard界面 将得到可视化界面的网址 python /home/eduadmin/.local/lib/python3.5/site-packages/tensorboard/main.py --logd…
本系列文章由 @yhl_leo 出品,转载请注明出处. 文章链接: http://blog.csdn.net/yhl_leo/article/details/50614444 测试代码已上传至GitHub:yhlleo/mnist 将MNIST数据集,下载后拷贝到文件夹Mnist_data中,如果已经配置好tensorflow环境,主要的四个测试代码文件,都可以直接编译运行: mnist_softmax.py: MNIST机器学习入门 mnist_deep.py: 深入MNIST fully_c…