tensorFlow(三)逻辑回归】的更多相关文章

文章内容均来自斯坦福大学的Andrew Ng教授讲解的Machine Learning课程,本文是针对该课程的个人学习笔记,如有疏漏,请以原课程所讲述内容为准.感谢博主Rachel Zhang 的个人笔记,为我做个人学习笔记提供了很好的参考和榜样. § 3.  逻辑回归 Logistic Regression 1 分类Classification 首先引入了分类问题的概念——在分类(Classification)问题中,所需要预测的$y$是离散值.例如判断一封邮件是否属于垃圾邮件.判断一个在线交…
官方mnist代码: #下载Mnist数据集 import tensorflow.examples.tutorials.mnist.input_data mnist = input_data.read_data_sets("MNIST_data/", one_hot=True) #Tensorflow实现回归模型 import tensorflow as tf #定义变量为float型,行因为不确定先给无穷大None:列给28*28=784 x = tf.placeholder(&qu…
前面一篇介绍了用tensorflow实现线性回归模型预测sklearn内置的波士顿房价,现在这一篇就记一下用逻辑回归分类sklearn提供的乳腺癌数据集,该数据集有569个样本,每个样本有30维,为二分类数据集,212个正样本,357个负样本. 首先,加载数据,并划分训练集和测试集: # 加载乳腺癌数据集,该数据及596个样本,每个样本有30维,共有两类 cancer = skd.load_breast_cancer() # 将数据集的数据和标签分离 X_data = cancer.data Y…
实现的是预测 低 出生 体重 的 概率.尼克·麦克卢尔(Nick McClure). TensorFlow机器学习实战指南 (智能系统与技术丛书) (Kindle 位置 1060-1061). Kindle 版本. # Logistic Regression #---------------------------------- # # This function shows how to use TensorFlow to # solve logistic regression. # y =…
tensorFlow 基础见前博客 逻辑回归广泛应用在各类分类,回归任务中.本实验介绍逻辑回归在 TensorFlow 上的实现 理论知识回顾 逻辑回归的主要公式罗列如下: 激活函数(activation function): 损失函数(cost function): 其中 损失函数求偏导(derivative cost function): 训练模型 数据准备 首先我们需要先下载MNIST的数据集.使用以下的命令进行下载: wget https://devlab-1251520893.cos.…
1. tf.matmul(X, w) # 进行点乘操作 参数说明:X,w都表示输入的数据, 2.tf.equal(x, y) # 比较两个数据对应位置的数是否相等,返回值为True,或者False 参数说明:x,y表示需要比较的两组数 3.tf.cast(y, 'float') # 将布尔类型转换为数字类型 参数说明:y表示输入的数据,‘float’表示转换的数据类型 4.tf.argmax(y, 1) # 返回每一行的最大值的索引 参数说明:y表示输入数据,1表示每一行的最大值的索引,0表示每…
(一)局部加权回归 通常情况下的线性拟合不能很好地预测所有的值,因为它容易导致欠拟合(under fitting).如下图的左图.而多项式拟合能拟合所有数据,但是在预测新样本的时候又会变得很糟糕,因为它导致数据的 过拟合(overfitting),不符合数据真实的模型.如下图的右图. 下面来讲一种非参数学习方法——局部加权回归(LWR).为什么局部加权回归叫做非参数学习方法呢?首先,参数学习方法是这样一种方法:在训练完成所有数据后得到一系列训练参数,然后根据训练参数来预测新样本的值,这时不再依赖…
1. Tensorflow 逻辑回归实现手写识别 1.1. 逻辑回归原理 1.1.1. 逻辑回归 1.1.2. 损失函数 1.2. 实例:手写识别系统 1.1. 逻辑回归原理 1.1.1. 逻辑回归 在现实生活中,我们遇到的数据大多数都是非线性的,因此我们不能用上一章线性回归的方法来进行数据拟合.但是我们仍然可以从线性模型着手开始第一步,首先对输入的数据进行加权求和. 线性模型: \[z=w{x}+b\] 其中w我们称为"权重",b为偏置量(bias),\({x}\)为输入的样本数据,…
本文旨在通过二元分类问题.多元分类问题介绍逻辑回归算法,并实现一个简单的数字分类程序 在生活中,我们经常会碰到这样的问题: 根据苹果表皮颜色判断是青苹果还是红苹果 根据体温判断是否发烧 这种答案只有两种可能的问题(y {0,1}),被称为二元分类问题 有一组数据: (x,y) {(1,0), (2,0), (3,0), (4,0), (5,0), (6,1), (7,1), (8,1), (9,1), (10,1) } 这组数据在二维平面表现如下: 现在要根据x的值把这些点分成2类 我们先按照线…
利用TensorFlow实现多元逻辑回归,代码如下: import tensorflow as tf import numpy as np from sklearn.linear_model import LogisticRegression from sklearn import preprocessing # Read x and y x_data = np.loadtxt("ex4x.dat").astype(np.float32) y_data = np.loadtxt(&qu…