facenet】的更多相关文章

上一篇装好了tensorflow的运行环境,开始尝试运行一些实例代码,在github上找到了一个tensorflow实现的facenet的代码,还是遇到了很多坑! 坚持看完,有重要总结! 代码:https://github.com/davidsandberg/facenet clone完毕后, 直接运行validate_on_lfw.py ,接下来就是一堆坑! 可能是新装的Ubuntu, 里面缺少太多东西了, 先装了多少东西基本不记得了, 起码还要安装好这两个: apt-get install…
1.简介:facenet 是基于 TensorFlow 的人脸识别开源库,有兴趣的同学可以扒扒源代码:https://github.com/davidsandberg/facenet 2.安装和配置 facenet 我们先将 facenet 源代码下载下来: git clone https://github.com/davidsandberg/facenet.git 在使用 facenet 前,务必安装下列这些库包: 或者直接移动到 facenet 目录下,一键安装 pip install -r…
在说到人脸检测我们首先会想到利用Harr特征提取和Adaboost分类器进行人脸检测(有兴趣的可以去一看这篇博客第九节.人脸检测之Haar分类器),其检测效果也是不错的,但是目前人脸检测的应用场景逐渐从室内演变到室外,从单一限定场景发展到广场.车站.地铁口等场景,人脸检测面临的要求越来越高,比如:人脸尺度多变.数量冗大.姿势多样包括俯拍人脸.戴帽子口罩等的遮挡.表情夸张.化妆伪装.光照条件恶劣.分辨率低甚至连肉眼都较难区分等.在这样复杂的环境下基于Haar特征的人脸检测表现的不尽人意.随着深度学…
本文来自<FaceNet: A Unified Embedding for Face Recognition and Clustering>.时间线为2015年6月.是谷歌的作品. 0 引言 虽然最近人脸识别领域取得了重大进展,但大规模有效地进行人脸验证和识别还是有着不小的挑战.Florian Schroff等人因此提出了FaceNet模型,该模型可以直接将人脸图片映射到欧式空间中.在该空间中,欧式embedding可以用平方的L2距离直接表示人脸的相似度: 相同ID的人脸距离较小: 不同ID…
1. DeepFace:Closing the Gap to Human-Level Performance in Face Verification 最早将深度学习用于人脸验证的开创性工作.Facebook AI实验室出品.动用了百万级的大规模数据库.典型的识别信号提特征+验证信号refine的两步走,对DeepID等后人的工作影响很大. 技术概括 关注了人脸验证流程中的人脸对齐步,采用了比较复杂的3D人脸建模技术和逐块的仿射变换进行人脸对齐.可以解决non-planarity对齐问题. 提出…
TensorFlow环境 人脸识别 FaceNet 应用(一)验证测试集 前提是TensorFlow环境以及相关的依赖环境已经安装,可以正常运行. 一.下载FaceNet源代码工程 git clone --recursive https://github.com/davidsandberg/facenet.git 二.下载数据集LFW LFW数据集是由美国马萨诸塞大学阿姆斯特分校计算机视觉实验室整理的 下载地址:http://vis-www.cs.umass.edu/lfw/lfw.tgz wg…
Triplet Loss 在人脸识别中,Triplet loss被用来进行人脸嵌入的训练.如果你对triplet loss很陌生,可以看一下吴恩达关于这一块的课程.Triplet loss实现起来并不容易,特别是想要将它加到tensorflow的计算图中. 通过本文,你讲学到如何定义triplet loss,和进行triplets采样的几种策略.然后我将解释如何在TensorFlow中使用在线triplets挖掘来实现Triplet loss. Triplet loss和triplets挖掘 为…
1.执行align_dataset_mtcnn.py出现无法导入检测模型的问题 a.现象如下 Creating networks and loading parameters Traceback (most recent call last): File "./src/align/align_dataset_mtcnn.py", line 146, in <module> main(parse_arguments(sys.argv[1:])) File "./sr…
主要内容: 一.FaceNet人脸识别简介 二.使用神经网络对人脸进行编码 三.代价函数triple loss 四.人脸库 五.人脸认证与人脸识别 一.FaceNet简介 1.FaceNet是一个深层神经网络,它将人脸编码成一个含有128个数的向量.通过比较两张人脸编码后的向量,可以判定两张人脸是否属于同一个人. 2.FaceNet的代价函数叫做“triplet loss function”,就是在训练的时候,一条训练数据包含三张人脸,第一张是本人(这张是主的),第二张也是本人的(需与第一张有差…
一.本文目标 利用facenet源码实现从摄像头读取视频,实时检测并识别视频中的人脸.换句话说:把facenet源码中contributed目录下的real_time_face_recognition.py运行起来. 二.需要具备的条件 1.准备好的Tensorflow环境 2.摄像头(可用视频文件替代) 3.准备好的facenet源码并安装依赖包 4.训练好的人脸检测模型 5.训练好的人脸识别分类模型 三.准备工作 1.搭建Tensorflow环境 如何编译搭建见<Ubuntu16.04+Te…