bzoj 4909 [Sdoi2017]龙与地下城】的更多相关文章

BZOJ 洛谷 https://www.luogu.org/blog/ShadowassIIXVIIIIV/solution-p3779# 正态分布 正态分布是随机变量\(X\)的一种概率分布形式.它用一个期望\(\mu\)和方差\(\sigma^2\)就可以描述,记为\(N(\mu,\sigma^2)\). 若随机变量\(X\)服从一个数学期望为\(\mu\).方差为\(\sigma^2\)的正态分布,记作\(X\sim N(\mu,\sigma^2)\),读作\(X\)服从\(N(\mu,\…
题面 https://www.lydsy.com/JudgeOnline/problem.php?id=4909 题解 目前为止仅仅在LOJ上A掉这道题(Loj真快!) 当然不是标准做法 显然我们只要求一个 然后$a^n$的系数就表示选n个的方案数 那么我们找到 然后$a^n$的系数就表示选n个的概率 FFT即可 按理说这东西只能过60分但是LOJ的评测机成功过掉...而且时限4秒最慢一个点只用3秒!!! Code #include<bits/stdc++.h> using namespace…
题面 传送门 题解 orz shadowice 正态分布 正态分布是随机变量\(X\)的一种概率分布形式.它用一个期望\(\mu\)和方差\(\sigma^2\)就可以描述,记为\(N(\mu,\sigma^2)\). 若随机变量\(X\)服从一个数学期望为\(\mu\).方差为\(\sigma^2\)的正态分布,记作\(X\)∼\(N(\mu,\sigma^2)\),读作\(X\)服从\(N(\mu,\sigma^2)\). 当\(\mu=0,\sigma=1\)时的正态分布称为标准正态分布.…
传送门 概率论神仙题-- 首先一个暴力做法是设\(f_{i,j}\)表示前\(i\)个骰子摇出点数和为\(j\)的概率,不难发现DP的过程是一个多项式快速幂,FFT优化可以做到\(O(XYlog(XY))\) 但是能够跑过\(4 \times 10^6\)的FFT应该很少见,所以我们对于\(Y\)比较大的部分需要另外考虑做法. 首先一个前置是概率密度函数:对于一个连续型随机变量\(p\),\(f(x)\)是\(p\)的概率密度函数当且仅当对于\(\forall l<r\),\(\int_l^r…
二次联通门 : BZOJ 4821: [Sdoi2017]相关分析 2017.8.23 Updata 妈妈!!这道题卡我!!!就是不然我过!!!!! #include <cstdio> #include <iostream> ; char Buf[BUF], *buf = Buf; inline void read (int &now) { bool temp = false; ; !isdigit (*buf); ++ buf) if (*buf == '-') temp…
[BZOJ 4820] [SDOI2017] 硬币游戏(高斯消元+概率论+字符串hash) 题面 扔很多次硬币后,用H表示正面朝上,用T表示反面朝上,会得到一个硬币序列.比如HTT表示第一次正面朝上,后两次反面朝上. 选出n个同学,每个同学猜一个长度为m的序列,当某一个同学猜的序列在硬币序列中出现时(匹配时的序列必须连续),就不再扔硬币了,并且这个同学胜利.猜的n个序列两两不同. 假设硬币正反面朝上的概率相同,求每个同学胜利的概率. \(n \leq 300\) 分析 (注意,本题中不区分序列和…
1444: [Jsoi2009]有趣的游戏 4820: [Sdoi2017]硬币游戏 这两道题都是关于不断随机生成字符后求出现给定字符串的概率的问题. 第一题数据范围较小,将串建成AC自动机以后,以AC自动机上每个点为一个未知数,列出方程高斯消元求解即可,时间复杂度$O(n^{3}m^{3})$. #include<queue> #include<cstdio> #include<algorithm> #define MN 21 #define ld double #d…
4816: [Sdoi2017]数字表格 Time Limit: 50 Sec  Memory Limit: 128 MBSubmit: 501  Solved: 222[Submit][Status][Discuss] Description Doris刚刚学习了fibonacci数列.用f[i]表示数列的第i项,那么 f[0]=0 f[1]=1 f[n]=f[n-1]+f[n-2],n>=2 Doris用老师的超级计算机生成了一个n×m的表格,第i行第j列的格子中的数是f[gcd(i,j)]…
BZOJ 洛谷 建出AC自动机,每个点向两个儿子连边,可以得到一张有向图.参照 [SDOI2012]走迷宫 可以得到一个\(Tarjan\)+高斯消元的\(O((nm)^3)\)的做法.(理论有\(60\)分啊但是第\(5.6\)个点WA了smg) 其实\(O((nm)^3)\)就是 [JSOI2009]有趣的游戏...只需建出AC自动机一遍高斯消元即可,比上面那个不知道好写到哪里去.. \(40\)分的做法问题在于状态(变量)太多.考虑把类似的状态合并成一个. 假设现在一共有两个串\(TTH\…
BZOJ LOJ 洛谷 恶心的拆式子..然后就是要维护\(\sum x_i,\ \sum y_i,\ \sum x_iy_i,\ \sum x_i^2\). 操作三可以看成初始化一遍,然后同操作二. 对于操作二的\(S,T\): \(\sum x_i,\ \sum y_i\)就是区间加. \(xy\to(x+S)(y+T)\to xy+xT+yS+ST\),维护了区间和后,直接加上\(xT+yS+ST\)即可. \(x^2\to(x+S)^2\to x^2+2Sx+S^2\),同上. 除了恶心点…