传送门 Machine scheduling Time Limit: 5000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 1048    Accepted Submission(s): 387 Problem Description A Baidu’s engineer needs to analyze and process large amount of dat…
Machine scheduling Time Limit: 5000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 1000    Accepted Submission(s): 363 Problem Description A Baidu's engineer needs to analyze and process large amount of data o…
题意: n个数(1~n)取出r个数,取出的数相差要>=k, 然后分成m个可空组,问有多少种情况. 解法: 先看从n个数中取r个相差>=k的数的方法数,可以发现 dp[i][j] = dp[1][j-1] + dp[2][j-1] + ... + dp[i-k][j-1],(dp[i][1] = i)  即维护一个前缀和即可,可以在O(r*n)内得出. 然后n个不同的数分成m个可以空的组,即为第二类Strling数的和 : S[n][1] + S[n][2] + ... + S[n][m]. S…
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2159 学习材料:https://blog.csdn.net/litble/article/details/80882581 https://www.cnblogs.com/Wuweizheng/p/8638858.html http://www.cnblogs.com/zhouzhendong/p/Stirling-Number.html https://blog.csdn.net/qq_…
这道题其实就是斯特林数,找不同的集合,一共有多少中组法,递推式就是dp[n][k] = dp[n - 1][k - 1] + k * dp[n - 1][k]; 这个式子可以这么解释,dp[n][k]就是总数为n分成k个集合一共有多少种, 它就有两种情况一种是第一个自己一个集合(也就是他自己一堆), 那么这种情况下的种类就是dp[n - 1][k - 1],就是剩下的n -1 个有k -1堆, 还有一种就是先把第一个拿出来,然后将剩下的n- 1个分成k个集合, 然后再把第一个随便放入一个, 但是…
题意:给定n个人,要求这n个人的所有可能排名情况,可以多个人并列(这个是关键). 题解:由于存在并列的问题,那么对于n个人,我们最多有n个排名,枚举一下1~n,累加一下就好.(注意这里是变种的斯特林数——每个子集合是可互相区分的). ac代码: #include <cstdio> #include <iostream> #include <cstring> #include <algorithm> using namespace std; typedef l…
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2159 使用公式:\( n^{k} = \sum\limits_{i=0}^{k} S(k,i) * i! * C_{n}^{i} \) 所以维护 \( f[x][i] = \sum\limits_{u\in subtree[x],d=dist(x,u)} C_{d}^{i} \) 然后利用 \( C_{n}^{m} = C_{n-1}^{m} + C_{n-1}^{m-1} \),可以树形…
解题报告: 小明走在一条小路上,这条小路的长度是10米,从左到右依次是0到10一共十个点,现在天上会掉馅饼,给出馅饼掉落的坐标和时间,一开始小明的位置是在坐标为5的位置, 他每秒钟只能移动一米的距离,问他最多能得到多少个馅饼. 这题可以说是一个动态规划题,就是一个数塔的变形,而且跟数塔的区别很小,我们可以把时间当成是数塔中的层,坐标就是数塔中的横向的位置,然后就是从时间最大的那一层出发,往时间最小的方向递归,最后得到的dp[0][5]就是我们所要的结果. #include<cstdio> #i…
https://www.cnblogs.com/cjyyb/p/10747543.html 特征方程+斯特林反演化简式子,要注意在模998244353意义下5没有二次剩余,所以每个数都要用$a+b\sqrt{5}$的形式表示,运算类似复数. 斯特林反演的几个用法: 1.下降幂转幂:连续求和时可以通过等比数列求和公式加速. 2.幂转下降幂:类似自然数幂和地用有限微积分加速,或帮助设计DP状态. #include<cstdio> #include<algorithm> #define…
根据组合意义,有nk=ΣC(n,i)*i!*S(k,i) (i=0~k),即将k个有标号球放进n个有标号盒子的方案数=在n个盒子中选i个将k个有标号球放入并且每个盒子至少有一个球. 回到本题,可以令f[i][j]表示ΣC(dis(i,k),j) (k为i子树中节点),通过C(i,j)=C(i-1,j)+C(i-1,j-1)转移. #include<iostream> #include<cstdio> #include<cmath> #include<cstdlib…
传送门 题意: 从\(n\)个人中选\(r\)个出来,但每两个人的标号不能少于\(k\). 再将\(r\)个人分为不超过\(m\)个集合. 问有多少种方案. 思路: 直接\(dp\)预处理出从\(n\)个人选\(r\)个的方案,第二类斯特拉数处理分组的情况即可. /* * Author: heyuhhh * Created Time: 2019/12/10 19:14:48 * dp预处理+第二类斯特林数 */ #include <iostream> #include <algorith…
题目链接:https://vjudge.net/problem/HDU-4045 Machine scheduling Time Limit: 5000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 1907    Accepted Submission(s): 702 Problem Description A Baidu’s engineer needs to an…
https://vjudge.net/problem/HDU-4625 题意 给出一颗树,边权为1,对于每个结点u,求sigma(dist(u,v)^k). 分析 贴个官方题解 n^k并不好转移,于是用第二类斯特林数转化一下,这样可以预处理第二类斯特林数,而sigma(C(dist(u,v),i))则利用C(n,x)=C(n-1,x)+C(n-1,x-1)来进行树DP转移得到. 设dp[u][k]=sigma(C(dist(u,v),k)),则dp[u][k]=dp[v][k]+dp[v][k-…
插板法基础知识 斯特林数见百科 #include<iostream> #include<cmath> #include<cstdio> #include<cstring> #define LL long long #define eps 1e-7 #define MOD 1000000007 using namespace std; ][]={},stir2[][]={}; int main(){ ;i<=;i++){ c[i][]=c[i][i]=;…
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2512 题目大意:因为长期钻研算法, 无暇顾及个人问题,BUAA ACM/ICPC 训练小组的帅哥们大部分都是单身.某天,他们在机房商量一个绝妙的计划"一卡通大冒险".这个计划是由wf最先提出来的,计划的内容是,把自己的联系方式写在校园一卡通的背面,然后故意将自己的卡"遗失"在某处(如水房,TD,食堂,主M....)他们希望能有MM看到他们遗失卡,能主动跟他们联系,这样就…
Machine scheduling Time Limit : 5000/2000ms (Java/Other)   Memory Limit : 32768/32768K (Java/Other) Total Submission(s) : 4   Accepted Submission(s) : 1 Font: Times New Roman | Verdana | Georgia Font Size: ← → Problem Description A Baidu’s engineer n…
Count the Buildings Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total Submission(s): 1249    Accepted Submission(s): 408 Problem Description There are N buildings standing in a straight line in the City, numbere…
题目大意: 对1到n求题目中描述的那个式子. 题目分析: 幂不好处理,转化为斯特林数. 根据$ n^k= \sum_ { i=0 }^k S(k,i)×i!×C(n,i) $. 我们可以将问题转化为对每个u和$ j=1 \sim k $求$ \sum_ { i=1 }^n \binom{dist(u,i)}{j} $. 通过杨辉三角向子树做一遍树形DP,再向父亲做一遍树形DP即可. 代码: #include<bits/stdc++.h> using namespace std; ; int n…
CTT=清华集训 题目大意 有\(n\)个点,点权为\(a_i\),你要连接一条边,使该图变成一颗树. 对于一种连边方案\(T\),设第\(i\)个点的度数为\(d_i\),那么这棵树的价值为: \[ val(T)=(\prod_{i=1}^na_i^{d_i}d_i^m)(\sum_{i=1}^nd_i^m) \] 求所有生成树的价值和\(\bmod 998244353\) \(n\leq 30000,m\leq 30\) 题解 很容易想到prufer序列 先把式子化简: \[ \begin{…
传送门并没有 思路 见到那么小的\(k\)次方,又一次想到斯特林数. \[ ans=\sum_{T} f(T)^k = \sum_{i=0}^k i!S(k,i)\sum_{T} {f(T)\choose i} \] 很套路地,考虑后面那个式子的组合意义:对于每一个点集的导出子图,选出\(i\)条边的方案数. 很套路地,我们想到树形DP. 设\(dp_{x,s,0/1}\)表示\(x\)子树内的所有非空点集的导出子图里选出\(s\)条边,点集里有/没有\(x\),的方案数. 每次加上一棵子树,就…
传送门 思路 又见到这个\(k\)次方啦!按照套路,我们将它搞成斯特林数: \[ ans_x=\sum_{i=0}^k i!S(k,i)\sum_y {dis(x,y) \choose i} \] 前面可以枚举,考虑后面那东西怎么求. 我们不知道为什么但就是考虑DP:设: \[ dn_{x,t}=\sum_{y\in x} {dis(x,y) \choose t}\\ up_{x,t}=\sum_{y\notin x} {dis(x,y) \choose t} \] 其中\(y\in x\)表示…
洛谷 Codeforces 这题真是妙的很. 通过看题解,终于知道了\(\sum_n f(n)^k​\)这种东西怎么算. update:经过思考,我对这题有了更深的理解,现将更新内容放在原题解下方. 思路 发现\(\sum_S (f(S))^k\)这东西因为有个\(k\)次方,所以特别难算,考虑拆开: \[ x^k=\sum_{i=0}^k {x \choose i} \times i! \times S(k,i) \] 其中\(S(n,m)\)是第二类斯特林数,即\(n\)个元素放进\(m​\…
BZOJ 洛谷 挺套路但并不难的一道题 \(Description\) 给定一棵\(n\)个点的树和\(K\),边权为\(1\).对于每个点\(x\),求\(S(x)=\sum_{i=1}^ndis(x,i)^K\). \(n\leq50000,\ k\leq150\). \(Solution\) 和其它求\(x^k\)的题一样,依旧用第二类斯特林数展开.(二项式定理依旧可以得到部分分,依旧不想看=-=) \[\begin{aligned}S(x)&=\sum_{i=1}^ndis(x,i)^K…
题意 给定一棵 \(n\) 个点的树和一个常数 \(k\) , 对于每个 \(i\) , 求 \[\displaystyle S(i) = \sum _{j=1} ^ {n} \mathrm{dist}(i, j)^k\] \(n ≤ 50000, k ≤ 150\) 题解 先划划那个 \(S(i)\) 的式子 我们需要知道一个化 \(x^n(n \ge 0)\) 的东西qwq \[\displaystyle x^n=\sum_{k=0}^{n}\begin{Bmatrix} n \\ k \e…
题目大意:n幢楼,从左边能看见f幢楼,右边能看见b幢楼 楼高是1~n的排列. 问楼的可能情况 把握看到楼的本质! 最高的一定能看见! 计数问题要向组合数学或者dp靠拢.但是这个题询问又很多,难以dp 如果把能看见的和之后挡住的看成一组的话... 那么可以看成这样: 每一组要固定第一个,,后面可以随便动,n!/n=(n-1)! 第一类斯特林数圆排列! 可分成的组数是:S[n-1][f+b-2](扣除中间最高的) 每一个圆排列只有最大值靠前的唯一展开方式 所以方案数是S[n-1][f+b-2]*C(…
题意:给定一棵树,求$S(i)=\sum_{j=1}^{n}dist(i,j)^k$.题解:根据斯特林数反演得到:$n^m=\sum_{i=0}^{n}C(n,i)\times i!\times S(m,i)$故$S(i)=\sum_{k=1}^{m}S(m,k)\times k!\times\sum_{j=1}^{n}C(dist(i,j),k)$用$f[i][k]$表示$C(dist(i,j),k)$,通过$Pascal$公式:$C(n,m)=C(n,m-1)+C(n-1,m-1)$,用树形…
题目:http://acm.hdu.edu.cn/showproblem.php?pid=3625 n^2 求斯特林数就行.要减去的就是1号钥匙在1号房间的方案,即 s[ n-1 ][ m-1] . 注意是 <=m . #include<iostream> #include<cstdio> #include<cstring> #include<algorithm> #define ll long long using namespace std; ;…
Description Crash 小朋友最近迷上了一款游戏--文明5(Civilization V).在这个游戏中,玩家可以建立和发展自己的国家,通过外交和别的国家交流,或是通过战争征服别的国家.现在Crash 已经拥有了一个N 个城市的国家,这些城市之间通过道路相连.由于建设道路是有花费的,因此Crash 只修建了N-1 条道路连接这些城市,不过可以保证任意两个城市都有路径相通.在游戏中,Crash 需要选择一个城市作为他的国家的首都,选择首都需要考虑很多指标,有一个指标是这样的: 其中S(…
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3625 题意: n个房间,房间里面放着钥匙,允许破门而入k个,拿到房间里面的钥匙后可以打开对应的门,但是1号门不能破门而入,求这样检查完所有房间,概率是多少? 分析: 钥匙随机放到房间,全排列有n!: n个房间,破k个门进入,就是第一类斯特林数S(n,k): 但是,第一个门不能破门而入,就是要减去S(n-1,k-1): 然后求和SUM = S(n,i)  {1<=i<=k} 概率就是 SUM / N…
题目:http://acm.hdu.edu.cn/showproblem.php?pid=4372 首先,最高的会被看见: 然后考虑剩下 \( x+y-2 \) 个被看见的,每个带了一群被它挡住的楼,其实方案数是圆排列,每个圆从最高的楼开始断掉都是不同的方案: 再把这 \( x+y-2 \) 个圆排列分成两组放左右两边,它们按最高楼的高度就自动有顺序了,不必再算: \( s[i][j] \) 表示第一类斯特林数,答案就是 \( s[n-1][x+y-2] * C_{x+y-2}^{x-1} \)…