BZOJ_2844_albus就是要第一个出场_线性基 Description 已知一个长度为n的正整数序列A(下标从1开始), 令 S = { x | 1 <= x <= n }, S 的幂集2^S定义为S 所有子 集构成的集合.定义映射 f : 2^S -> Zf(空集) = 0f(T) = XOR A[t] , 对于一切t属于T现在albus把2^S中每个集 合的f值计算出来, 从小到大排成一行, 记为序列B(下标从1开始). 给定一个数, 那么这个数在序列B中第1 次出现时的下标…
一.题目 albus就是要第一个出场 二.分析 非常有助于理解线性基的一题. 构造线性基$B$后,如果$|A| > |B|$,那么就意味着有些数可以由$B$中的数异或出来,而多的数可以取或者不取,相当于每多一个数,那么线性基能生成的数的子集的种类就可以乘以$2$,最终就是乘以$2^{|A|-|B|}$. 所以对于给定的$Q$,要确定它是由哪些位置的线性基中的数生成的,然后确定它在不重复序列中的位置,然后再乘以$2^{|A|-|B|}$,最终还需要$+1$,因为前面求的其实是不包含这个数的子集总个…
传送门 不知道线性基是什么东西的可以看看蒟蒻的总结 线性基居然有这性质我还不知道orz 假设$n$个数的线性基中有$k$个数,那么显然共有$2^k$个不同的异或和,而其中每一个异或和的出现次数都是$2^{n-k}$ 感性理解一下的话……就是不在线性基中的每一个数字都可以被线性基中的数字表示出来从而异或之后为0,那么这些数字都可以看做0, 所以每一个异或和都可以异或上0变成自己,那么0有多少种选法呢?加上空集就是$2^{n-k}$种 然后只要算出$q$之前有多少个数就好了…… 然后这个东西具体怎么…
BZOJ_2460_[BeiJing2011]元素_线性基 Description 相传,在远古时期,位于西方大陆的 Magic Land 上,人们已经掌握了用魔 法矿石炼制法杖的技术.那时人们就认识到,一个法杖的法力取决于使用的矿石. 一般地,矿石越多则法力越强,但物极必反:有时,人们为了获取更强的法力而 使用了很多矿石,却在炼制过程中发现魔法矿石全部消失了,从而无法炼制 出法杖,这个现象被称为“魔法抵消” .特别地,如果在炼制过程中使用超过 一块同一种矿石,那么一定会发生“魔法抵消”.  …
BZOJ_4004_[JLOI2015]装备购买_线性基 Description 脸哥最近在玩一款神奇的游戏,这个游戏里有 n 件装备,每件装备有 m 个属性,用向量zi(aj ,.....,am) 表示  (1 <= i <= n; 1 <= j <= m),每个装备需要花费 ci,现在脸哥想买一些装备,但是脸哥很穷,所以总是盘算着 怎样才能花尽量少的钱买尽量多的装备.对于脸哥来说,如果一件装备的属性能用购买的其他装备组合出(也就是 说脸哥可以利用手上的这些装备组合出这件装备的效…
BZOJ_3105_[cqoi2013]新Nim游戏_线性基+博弈论 Description 传统的Nim游戏是这样的:有一些火柴堆,每堆都有若干根火柴(不同堆的火柴数量可以不同).两个游戏者轮流操作,每次可以选一个火柴堆拿走若干根火柴.可以只拿一根,也可以拿走整堆火柴,但不能同时从超过一堆火柴中拿.拿走最后一根火柴的游戏者胜利. 本题的游戏稍微有些不同:在第一个回合中,第一个游戏者可以直接拿走若干个整堆的火柴.可以一堆都不拿,但不可以全部拿走.第二回合也一样,第二个游戏者也有这样一次机会.从第…
LOJ114_k 大异或和_线性基 先一个一个插入到线性基中,然后高斯消元. 求第K小就是对K的每一位是1的都用对应的线性基的一行异或起来即可. 但是线性基不包含0的情况,因此不能确定能否组成0,需要特判. 在插入一个数时如果这个数最后变成0了就说明可以组成0. 代码: #include <cstdio> #include <cstring> #include <algorithm> using namespace std; typedef long long ll;…
HDU6579 2019HDU多校训练赛第一场1002 (线性基) 传送门:http://acm.hdu.edu.cn/showproblem.php?pid=6579 题意: 两种操作 1.在序列末尾添加一个数 2.查询区间异或最大值 强制在线 题解: 暴力的做法可以用数据结构维护区间线性基,但肯定过不了. 贪心地维护序列的前缀线性基 (上三角形态),对于每个线性基,将出现位置靠右的数 字尽可能地放在高位,也就是说在插入新数字的时候,要同时记录对应位置上数字的出现位 置,并且在找到可以插入的位…
可爱的菜菜子 题目链接:https://cometoj.com/contest/38/problem/D?problem_id=1543 数据范围:略. 题解: 首先,如果第一个操作是单点修改,我们就只需要用线段树维护区间线性基即可. 但是,第一个操作是区间异或,这就很难受了. 区间操作可以怎么转化成单点?差分呗. 将原序列异或差分之后,确实修改变成了单点修改. 查询是否有影响?其实是没有影响的因为相当于整个一个区间的每个数异或上同一个数(前$l - 1$个数的异或和),线性基不受影响. 代码:…
题意 给n个整数,求满足子集异或和为0的子集大小之和. 分析 将问题转化为求每个元素的贡献次数之和. 先对n个数求线性基,设线性基大小为r,即插入线性基的数字个数为r,可以分别计算线性基内数的贡献和线性基外的数的贡献 线性基外:共n-r个数,枚举每个数x,它可以和将线性基外剩余的n-r-1个数同时存在一个集合内,显然共有\(2^{n-r-1}\)个集合,所以x的贡献为\(2^{n-r-1}\). 线性基内:枚举每个数x,将剩余的n-1个数再求一次线性基,设为B,分两种情况: x不能被B异或出.那…