pytorch: Variable detach 与 detach_】的更多相关文章

pytorch 的 Variable 对象中有两个方法,detach和 detach_ 本文主要介绍这两个方法的效果和 能用这两个方法干什么. detach 官方文档中,对这个方法是这么介绍的. 返回一个新的 从当前图中分离的 Variable.返回的 Variable 永远不会需要梯度如果 被 detach 的Variable volatile=True, 那么 detach 出来的 volatile 也为 True还有一个注意事项,即:返回的 Variable 和 被 detach 的Var…
参考:https://pytorch-cn.readthedocs.io/zh/latest/package_references/torch-autograd/#detachsource 当我们再训练网络的时候可能希望保持一部分的网络参数不变,只对其中一部分的参数进行调整:或者值训练部分分支网络,并不让其梯度对主网络的梯度造成影响,这时候我们就需要使用detach()函数来切断一些分支的反向传播 1   detach()[source] 返回一个新的Variable,从当前计算图中分离下来的,…
[摘要] PyTorch是最优秀的深度学习框架之一,它简单优雅,非常适合入门.本文将介绍PyTorch的最佳实践和代码风格都是怎样的. 虽然这是一个非官方的 PyTorch 指南,但本文总结了一年多使用 PyTorch 框架的经验,尤其是用它开发深度学习相关工作的最优解决方案.请注意,我们分享的经验大多是从研究和实践角度出发的. 这是一个开发的项目,欢迎其它读者改进该文档:https://github.com/IgorSusmelj/pytorch-styleguide. 本文档主要由三个部分构…
A PyTorch Tools, best practices & Styleguide 中文版:PyTorch代码规范最佳实践和样式指南 This is not an official style guide for PyTorch. This document summarizes best practices from more than a year of experience with deep learning using the PyTorch framework. Note th…
在PyTorch中计算图的特点可总结如下: autograd根据用户对variable的操作构建其计算图.对变量的操作抽象为Function. 对于那些不是任何函数(Function)的输出,由用户创建的节点称为叶子节点,叶子节点的grad_fn为None.叶子节点中需要求导的variable,具有AccumulateGrad标识,因其梯度是累加的. variable默认是不需要求导的,即requires_grad属性默认为False,如果某一个节点requires_grad被设置为True,那…
我最近在学使用Pytorch写GAN代码,发现有些代码在训练部分细节有略微不同,其中有的人用到了detach()函数截断梯度流,有的人没用detch(),取而代之的是在损失函数在反向传播过程中将backward(retain_graph=True),本文通过两个 gan 的代码,介绍它们的作用,并分析,不同的更新策略对程序效率的影响. 这两个 GAN 的实现中,有两种不同的训练策略: 先训练判别器(discriminator),再训练生成器(generator),这是原始论文Generative…
pytorch中基本的变量类型当属FloatTensor(以下都用floattensor),而Variable(以下都用variable)是floattensor的封装,除了包含floattensor还包含有梯度信息 pytorch中的dochi给出一些对于floattensor的基本的操作,比如四则运算以及平方等(链接),这些操作对于floattensor是十分的不友好,有时候需要写一个正则化的项需要写很长的一串,比如两个floattensor之间的相加需要用torch.add()来实现 然而…
查看非叶节点梯度的两种方法 在反向传播过程中非叶子节点的导数计算完之后即被清空.若想查看这些变量的梯度,有两种方法: 使用autograd.grad函数 使用hook autograd.grad和hook方法都是很强大的工具,更详细的用法参考官方api文档,这里举例说明基础的使用.推荐使用hook方法,但是在实际使用中应尽量避免修改grad的值. 求z对y的导数 x = V(t.ones(3)) w = V(t.rand(3),requires_grad=True) y = w.mul(x) z…
自动求导机制是pytorch中非常重要的性质,免去了手动计算导数,为构建模型节省了时间.下面介绍自动求导机制的基本用法. #自动求导机制 import torch from torch.autograd import Variable # 1.简单的求导(求导对象是标量) x = Variable(torch.Tensor([2]),requires_grad=True) y = (x + 2) ** 2 + 3 print(y) y.backward() print(x.grad) #对矩阵求…
Tensor是Pytorch的一个完美组件(可以生成高维数组),但是要构建神经网络还是远远不够的,我们需要能够计算图的Tensor,那就是Variable.Variable是对Tensor的一个封装,操作和Tensor是一样的,但是每个Variable都有三个属性,Varibale的Tensor本身的.data,对应Tensor的梯度.grad,以及这个Variable是通过什么方式得到的.grad_fn. # 通过一下方式导入Variable from torch.autograd impor…