Multiple Object Recognition With Visual Attention Google DeepMind  ICRL 2015 本文提出了一种基于 attention 的用于图像中识别多个物体的模型.该模型是利用RL来训练 Deep RNN,以找到输入图像中最相关的区域.尽管在训练的过程中,仅仅给出了类别标签,但是仍然可以学习定位并且识别出多个物体. Deep Recurrent Visual Attention Model 文中先以单个物体的分类为基础,再拓展到多个…
Recurrent Models of Visual Attention Google DeepMind 模拟人类看东西的方式,我们并非将目光放在整张图像上,尽管有时候会从总体上对目标进行把握,但是也是将目光按照某种次序(例如,从上倒下,从左到右等等)在图像上进行扫描,然后从一个区域转移到另一个区域.这么一个一个的区域,就是定义的part,或者说是 glimpse.然后将这些区域的信息结合起来用于整体的判断和感受. 站在某个底层的角度,物体的显著性已经将这个物体研究的足够透彻.本文就是从这些东西…
论文笔记: Dual Deep Network for Visual Tracking  2017-10-17 21:57:08  先来看文章的流程吧 ... 可以看到,作者所总结的三个点在于: 1. 文章将 边界和形状信息结合到深度网络中.底层 feature 和 高层 feature 结合起来,得到 coarse prior map,然后用 ICA-R model 得到更加显著的物体轮廓,以得到更好的似然性模型: 2. Dual network 分别处理两路不同的网络,使得前景和背景更加具有…
论文笔记之:Action-Decision Networks for Visual Tracking with Deep Reinforcement Learning  2017-06-06  21:43:53  这篇文章的 Motivation 来自于 MDNet: 本文所提出的 framework 为:…
Localizing by Describing: Attribute-Guided Attention Localization for Fine-Grained Recognition Baidu Research 本文主要是将part描述利用起来,协助进行part定位,针对每一个定位好的part,再进行每一个part对应属性的识别.首先来看一张图,有一个直观的印象:…
网上已有很多关于MOT的文章,此系列仅为个人阅读随笔,便于初学者的共同成长.若希望详细了解,建议阅读原文. 本文是tracking by detection 方法进行多目标跟踪的文章,最大的特点是使用了state-of-the-art的detection和feature来代替以往的方法,使用简单的匹配方法就能达到最好的水平. 论文地址:https://arxiv.org/pdf/1610.06136.pdf Detection 以及  Appearance特征地址(Google Drive 需F…
SiamRPN++: Evolution of Siamese Visual Tracking with Very Deep Networks 2019-04-02 12:44:36 Paper:https://arxiv.org/pdf/1812.11703.pdf Project:https://lb1100.github.io/SiamRPN++ 1. Background and Motivation: 与 CVPR 2019 的另一篇文章 Deeper and Wider Siames…
Learning Attribute-Specific Representations for Visual Tracking AAAI-2019 Paper:http://faculty.ucmerced.edu/mhyang/papers/aaai2019_tracking.pdf 本文提出一种新的学习思路,即:属性信息 (e.g., illumination changes, occlusion and motion) ,来进行 CNN 特征的学习,以得到更加鲁棒的 tracker.具体来…
2014 ICLR 纽约大学 LeCun团队 Pierre Sermanet, David Eigen, Xiang Zhang, Michael Mathieu, Rob Fergus, Yann LeCun 简单介绍(What) Ovefeat是2013年ImageNet定位任务的冠军,同时在分类和检测任务也取得了不错的结果. 它用一个共享的CNN来同时处理图像分类,定位,检测三个任务,可以提升三个任务的表现. 它用CNN有效地实现了一个多尺度的,滑动窗口的方法,来处理任务. 提出了一种方法…
一.概述 Nvidia提出的一种基于3DCNN的动态手势识别的方法,主要亮点是提出了一个novel的data augmentation的方法,以及LRN和HRn两个CNN网络结合的方式. 3D的CNN主要是使用了三维的卷积核去处理视频序列,是视频分析中常用的方法之一. 这里是可以识别手语这种动态连续的手势的. 二.亮点 首先..竟然没有state of art... 1.预处理:因为输入是连续的视频序列,所以需要对他们进行规范化,这里用nearest neighbor interpolation…