训练时,出现Check failed:error == cudaSuccess (2 vs. 0) out of memory,并且accruary = 0,如下图所示: 解决方法:将train_val.prototxt文件中的batch_size变小一点,如下图所示: 也可参见博客: http://blog.csdn.net/u013066730/article/details/53784614…
训练AlexNet网络时,出现Check failed:datum_height >= crop_size (size vs. 227)错误,具体如下图所示: 根据提示,问题是crop_size的尺寸不匹配,AlexNet网络默认crop_size的尺寸是227*227,而我进行归一化时将每幅图像归一化成了32*32,所以这里出现问题. 在train_val.prototxt文件中将其改为32*32后,上图问题解决,如下图所示: 但紧接着出现下面的问题,如下图所示: 这个问题是由于归一化后的尺寸…
caffe 进行自己的imageNet训练分类:loss一直是87.3365,accuracy一直是0 解决方法: http://blog.csdn.net/jkfdqjjy/article/details/52268565?locationNum=14 知道了原因,解决时就能对症下药.总体上看,softmax输入的feature由两部分计算得到:一部分是输入数据,另部分是各层权重参数. 1.观察数据中是否有异常样本或异常label导致数据读取异常2.调小初始化权重,以便使softmax输入的f…
当我们使用Caffe训练AlexNet网络时,会遇到精度一值在低精度(30%左右)升不上去,或者精度总是为0,如下图所示: 出现这种情况,可以尝试使用以下几个方法解决: 1.数据样本量是否太少,最起码要千张图片样本. 2.在制作训练样本标签时,是否打乱样本顺序,这样在训练时每取batch_size个样本就可以训练多个类别,以防止时出现常出现0精度或1精度的情况. 3.文件solver.prototxt和文件train_val.prototxt的配置问题,一般调节solver文件中的学习率base…
数据集 1.准备数据集 1)下载训练和验证图片 ImageNet官网地址:http://www.image-net.org/signup.php?next=download-images (需用邮箱注册,而且邮箱不能是地址以.com结尾的邮箱) ImageNet官网下载ILSVRC2012的训练数据集和验证数据集.除数据集外,ImageNet还提供了一个开发工具包ILSVRC2012_devkit_t12.tar.gz,是对ILSVRC2012数据集的详细讲解,提交比赛结果的要求,和对结果评价的…
1.在开始之前,先简单回顾一下几个概念. Caffe(Convolution Architecture For Feature Extraction-卷积神经网络框架):是一个清晰,可读性高,快速的深度学习框架. CUDA(Compute Unifined Device Architecture-计算统一设备框架):是显卡厂商NVIDIA推出的运算平台. CUDA是一种由NVIDIA推出的通用并行计算架构,该架构使GPU能够解决复杂的计算问题. CuDNN( CUDA Deep Neural N…
训练我们自己的数据 本篇继续之前的教程,下面我们尝试使用别人定义好的网络,来训练我们自己的网络. 1.准备数据 首先很重要的一点,我们需要准备若干种不同类型的图片进行分类.这里我选择从ImageNet上下载了3个分类的图片(Cat,Dog,Fish). 图片需要分两批:训练集(train).测试集(test),一般训练集与测试集的比例大概是5:1以上,此外每个分类的图片也不能太少,我这里每个分类大概选了5000张训练图+1000张测试图. 找好图片以后,需要准备以下文件: words.txt:分…
默认caffe已经编译好了,并且编译好了pycaffe 1 数据准备 首先准备训练和测试数据集,这里准备两类数据,分别放在文件夹0和文件夹1中(之所以使用0和1命名数据类别,是因为方便标注数据类别,直接用文件夹的名字即可).即训练数据集:/data/train/0./data/train/1  训练数据集:/data/val/0./data/val/1. 数据准备好之后,创建记录数据文件和对应标签的txt文件 (1)创建训练数据集的train.txt import os f =open(r'tr…
一.深度学习中常用的调节参数 本节为笔者上课笔记(CDA深度学习实战课程第一期) 1.学习率 步长的选择:你走的距离长短,越短当然不会错过,但是耗时间.步长的选择比较麻烦.步长越小,越容易得到局部最优化(到了比较大的山谷,就出不去了),而大了会全局最优 一般来说,前1000步,很大,0.1:到了后面,迭代次数增高,下降0.01,再多,然后再小一些. 2.权重 梯度消失的情况,就是当数值接近于正向∞,求导之后就更小的,约等于0,偏导为0 梯度爆炸,数值无限大 对于梯度消失现象:激活函数 Sigmo…
个人认为学习一个陌生的框架,最好从例子开始,所以我们也从一个例子开始. 学习本教程之前,你需要首先对卷积神经网络算法原理有些了解,而且安装好了caffe 卷积神经网络原理参考:http://cs231n.stanford.edu/syllabus.html Ubuntu安装caffe教程参考:http://caffe.berkeleyvision.org/install_apt.html 先讲解一下caffe设计的架构吧: 训练mnist数据集使用 build/tools/caffe 训练步骤:…