SVD分解的理解】的更多相关文章

http://www.bfcat.com/index.php/2012/03/svd-tutorial/ SVD分解(奇异值分解),本应是本科生就掌握的方法,然而却经常被忽视.实际上,SVD分解不但很直观,而且极其有用.SVD分解提供了一种方法将一个矩阵拆分成简单的,并且有意义的几块.它的几何解释可以看做将一个空间进行旋转,尺度拉伸,再旋转三步过程. 首先来看一个对角矩阵, 几何上, 我们将一个矩阵理解为对于点 (x, y) 从一个平面到另一个平面的映射: 下图显示了这个映射的效果: 平面被横向…
对称阵A 相应的,其对应的映射也分解为三个映射.现在假设有x向量,用A将其变换到A的列空间中,那么首先由U'先对x做变换: 由于正交阵“ U的逆=U‘ ”,对于两个空间来讲,新空间下的“ 基E' 坐标 x' ,原空间E 坐标x ”有如下关系 EX=E'X' ===> X=E'X' ===> X'=(E'的逆)x ==> x向量在新的“基”下的新坐标  (E的转置)X: 1.那么对于上式UTx先可以理解为:将x用A的所有特征向量表示为: 则通过第一个变换就可以把x表示为[a1 a2 ...…
SVD分解 SVD分解是LSA的数学基础,本文是我的LSA学习笔记的一部分,之所以单独拿出来,是因为SVD可以说是LSA的基础,要理解LSA必须了解SVD,因此将LSA笔记的SVD一节单独作为一篇文章.本节讨论SVD分解相关数学问题,一个分为3个部分,第一部分讨论线性代数中的一些基础知识,第二部分讨论SVD矩阵分解,第三部分讨论低阶近似.本节讨论的矩阵都是实数矩阵. 基础知识 1. 矩阵的秩:矩阵的秩是矩阵中线性无关的行或列的个数 2. 对角矩阵:对角矩阵是除对角线外所有元素都为零的方阵 3.…
版权声明: 本文由LeftNotEasy发布于http://leftnoteasy.cnblogs.com, 本文可以被全部的转载或者部分使用,但请注明出处,如果有问题,请联系wheeleast@gmail.com 前言: 上一次写了关于PCA与LDA的文章,PCA的实现一般有两种,一种是用特征值分解去实现的,一种是用奇异值分解去实现的.在上篇文章中便是基于特征值分解的一种解释.特征值和奇异值在大部分人的印象中,往往是停留在纯粹的数学计算中.而且线性代数或者矩阵论里面,也很少讲任何跟特征值与奇异…
  首先推荐一篇博客,奇异值分解(SVD)原理详解及推导 - CSDN博客,讲解的很清楚.这里我谈谈自己的理解,方便以后回顾.   如果把向量理解为空间中的一个元素,那么矩阵可以理解为两个空间上的映射.在线性代数中我们常见的是正交变换,这种变换不会改变向量之间的夹角,可以用坐标系的平移旋转来直观理解.但是对一般的方阵,甚至对更一般的非对称矩阵,这种变化的几何含义又该怎么理解,一直都没有搞清楚.通过奇异值分解能说明这些变化 的实际含义.   首先我们来看一般的方阵\(M(n*n)\),可以找到一对…
原帖地址: http://blog.sina.com.cn/s/blog_6109b5d00101ag7a.html       在摄影测量和计算机视觉中,考虑最优解问题时,经常要用到SVD分解.奇异值分解 (singular value decomposition,SVD) 是一种可靠地正交矩阵分解法,但它比QR分解法要花上近十倍的计算时间.在matlab中,[U,S,V]=svd(A),其中U和V代表二个相互正交矩阵,而S代表一对角矩阵. 和QR分解法相同者, 原矩阵A不必为正方矩阵.使用S…
投影矩阵广泛地应用在数学相关学科的各种证明中,但是由于其概念比较抽象,所以比较难理解.这篇文章主要从最小二乘法的推导导出投影矩阵,并且应用SVD分解,写出常用的几种投影矩阵的形式. 问题的提出 已知有一个这样的方程组: \[Ax=b\] 其中,\(A \in R^{m \times n},x,b \in R^n\) 当\(m=n\)时,且\(rank(A)=n\)时,这是一个适定方程组,有唯一解\(x=A^{-1}b\) 当\(m<n\)时,或者\(rank(A)<n\)时,这是一个欠定方程组…
推荐系统: 1.基于内容的实现:KNN等 2.基于协同滤波(CF)实现:SVD → pLSA(从LSA发展而来,由SVD实现).LDA.GDBT SVD算是比较老的方法,后期演进的主题模型主要是pLSA和LDA.pLSA主要基于EM最大期望算法,而LDA主要基于Gibbs抽样算法,这个在下一篇文章<主题模型>里会详细介绍. 一.推荐系统 推荐系统实现主要分为两个方面:基于内容实现和基于协同滤波实现. 1.基于内容 不同人对不同电影评分这个例子,可以看做是一个普通回归(线性回归)问题,因此每部电…
前面我们讲了 QR 分解有一些优良的特性,但是 QR 分解仅仅是对矩阵的行进行操作(左乘一个酉矩阵),可以得到列空间.这一小节的 SVD 分解则是将行与列同等看待,既左乘酉矩阵,又右乘酉矩阵,可以得出更有意思的信息.奇异值分解( SVD, Singular Value Decomposition ) 在计算矩阵的伪逆( pseudoinverse ),最小二乘法最优解,矩阵近似,确定矩阵的列向量空间,秩以及线性系统的解集空间都有应用. 1. SVD 的形式 对于一个任意的 m×n 的矩阵 A,S…
SVD分解 只有非方阵才能进行奇异值分解 SVD分解:把矩阵分解为 特征向量矩阵+缩放矩阵+旋转矩阵 定义 设\(A∈R^{m×n}\),且$ rank(A) = r (r > 0) $,则矩阵A的奇异值分解(SVD)可表示为 \(A = UΣV^T = U\begin{bmatrix} \sum &0\\ 0&0 \end{bmatrix}V = σ_1u_1v^T_1+σ_2u_2v^T_2+σ_ru_rv^T_r \qquad s.t.:U 和V都为正交矩阵\) 几何含义 A矩…
一.SVD奇异值分解的定义 假设是一个的矩阵,如果存在一个分解: 其中为的酉矩阵,为的半正定对角矩阵,为的共轭转置矩阵,且为的酉矩阵.这样的分解称为的奇异值分解,对角线上的元素称为奇异值,称为左奇异矩阵,称为右奇异矩阵. 二.SVD奇异值分解与特征值分解的关系 特征值分解与SVD奇异值分解的目的都是提取一个矩阵最重要的特征.然而,特征值分解只适用于方阵,而SVD奇异值分解适用于任意的矩阵,不一定是方阵. 这里,和是方阵,和为单位矩阵,为的特征向量,为的特征向量.和的特征值为的奇异值的平方. 三.…
转自 http://blog.csdn.net/zhongkejingwang/article/details/43053513(实在受不了CSDN的广告) 在网上看到有很多文章介绍SVD的,讲的也都不错,但是感觉还是有需要补充的,特别是关于矩阵和映射之间的对应关系.前段时间看了国外的一篇文章,叫A Singularly Valuable Decomposition The SVD of a Matrix,觉得分析的特别好,把矩阵和空间关系对应了起来.本文就参考了该文并结合矩阵的相关知识把SVD…
1.设是两组Rd空间的点集,可根据这两个点集计算它们之间的旋转平移信息. 2.设R为不变量,对T求导得: 令 则 将(4)带入(1)得: 令 则 (相当于对原来点集做减中心点预处理,再求旋转量) 3. 计算旋转量 因为R为正交阵且,均为标量, 所以 所以 而 令,对S进行SVD分解,则 令,则M为正交阵, 要求得最大迹,则使mii=1,则M必为单位阵,即…
这部分矩阵运算的知识是三维重建的数据基础. 矩阵分解 求解线性方程组:,其解可以表示为. 为了提高运算速度,节约存储空间,通常会采用矩阵分解的方案,常见的矩阵分解有LU分解.QR分解.Cholesky分解.Schur分解.奇异分解等.这里简单介绍几种. LU分解:如果方阵A是非奇异的,LU分解总可进行.一个矩阵可以表示为一个交换下三角矩阵和一个上三角矩阵的乘机.更整洁的形式是:一个矩阵可以表示为一个上三角矩阵和一个下三角矩阵以及一个置换矩阵的形式,即: 从而方程的解可以表示为 QR分解:矩阵可以…
这篇文章主要是结合机器学习实战将推荐算法和SVD进行对应的结合 不论什么一个矩阵都能够分解为SVD的形式 事实上SVD意义就是利用特征空间的转换进行数据的映射,后面将专门介绍SVD的基础概念.先给出python,这里先给出一个简单的矩阵.表示用户和物品之间的关系 这里我自己有个疑惑? 对这样一个DATA = U(Z)Vt 这里的U和V真正的几何含义  :  书上的含义是U将物品映射到了新的特征空间, V的转置  将 用户映射到了新的特征空间 以下是代码实现.同一时候SVD还能够用于降维,降维的操…
SVD的几何解释:http://blog.csdn.net/dinosoft/article/details/37884597 上文未证明为什么AAT的特征向量就是要找的v 这里有个简单的说明: SVD分解在图像压缩的应用:http://cos.name/2014/02/svd-and-image-compression/…
使用Eigen 库:进行svd分解,形如 A = U * S * VT. JacobiSVD<MatrixXd> svd(J, ComputeThinU | ComputeThinV); U = svd.matrixU(); V = svd.matrixV(); A = svd.singularValues(); Eigen::JacobiSVD< _Matrix_Type_ > svd(a ,Eigen::ComputeThinU | Eigen::ComputeThinV);…
奇异值分解实际上是将一个矩阵,分解成为两个不同维度(行数和列数)上的正交向量集之间的映射变换,奇异值则是变换时的缩放! 例如上面的矩阵M就是一个5维映射到4维的变换矩阵,而SVD分解得到的奇异值和奇异向量则反应了这种映射关系,可以看出5维空间的各个正交方向上,缩放了多少后,映射到了4维的哪些方向.…
转载请注明原地址:http://www.cnblogs.com/connorzx/p/4170047.html 提出原因 基于余弦定理对文本和词汇的处理需要迭代的次数太多(具体见14章笔记),为了找到一个一步到位的办法,可以使用奇异值分解(SVD分解) 算法实现 建立一个M-by-N的矩阵A,其中行表示M篇文章,列表示N个词.aij表示第j个词在第i篇文章中出现的加权词频.将A进行奇异值分解,A=XBY,X为M-by-R矩阵,B为R阶方阵,Y为R-by-N矩阵.若R<<M,N,则存储量和计算量…
可逆方阵 A 的逆记为,A−1,需满足 AA−1=I. 在 BLAS 的各种实现中,一般都不会直接给出 matrix inverse 的直接实现,其实矩阵(方阵)的逆是可以通过 gemm()和gesvd()操作得到. 实值可逆方阵 A,其 SVD 分解如下: A⋅V=U⋅S 其中: V,U 均为正交矩阵, {VVT=IUUT=I⇒{V−1=VTU−1=UT S 为对角矩阵: 因为 A 是可逆的,根据 SVD 的定义,S 的对角元素均是正数: 所以有: A⋅V⋅S−1⋅U−1=I⇒A⋅V⋅S−1⋅…
首先,有y = AX,将A看作是对X的线性变换 但是,如果有AX = λX,也就是,A对X的线性变换,就是令X的长度为原来的λ倍数. *说起线性变换,A肯定要是方阵,而且各列线性无关.(回想一下,A各列相当于各个坐标轴,X各个分量相当于各个坐标轴的“基本向量”长度) (同一长度的各个方向的向量,变换前和变换后,有些前后只是拉伸了,方向不变:有些拉伸了,方向同时也改变了) 这样的X1,X2……Xn称为特征向量, λ1, λ2…… λn为对应的特征值. 如果有S矩阵,全是特征特征向量,也就是 S =…
title: [线性代数]6-7:SVD分解(Singular Value Decomposition-SVD) categories: Mathematic Linear Algebra keywords: Singular Value Decomposition JPEG Eigenvalues Eigenvectors toc: true date: 2017-11-30 09:02:19 Abstract: 本文介绍SVD,奇异值分解,应该可以算是本章最后的高潮部分了,也是在机器学习中我…
SVD 分解是线性代数的一大亮点. 1. SVD 分解 \(A\) 是任意的 \(m×n\) 矩阵,它的秩为 \(r\),我们要对其进行对角化,但不是通过 \(S^{-1}A S\).\(S\) 中的特征向量有三个大问题:它们通常不是正交的:并不总是有足够的特征向量:\(Ax=\lambda x\) 需要 \(A\) 是一个方阵.\(A\) 的奇异向量很好地解决了上述所有问题. 代价是我们需要两组奇异向量,一组是 \(\boldsymbol{u}\), 一组是 \(\boldsymbol{v}\…
原文链接:http://www.cnblogs.com/appler/archive/2012/02/02/2335886.html 原始英文链接:http://www.puffinwarellc.com/index.php/news-and-articles/articles/33.html 潜语义分析LSA介绍 Latent Semantic Analysis (LSA), also known as Latent Semantic Indexing (LSI) literally mean…
求矩阵的秩 设 ,已知r(A)=2,则参数x,y分别是 解:任意三阶子式=0,有二阶子式≠0,但是这些子式比较多,可以使用初等变换,因为初等变换不改变矩阵的秩,可以将矩阵通过初等行(列)变换,化为行阶梯矩阵,有几行不等于0,秩就是几. 行列式的转换                                Am×nx=0只有零解 <=> r(A)=n 特别地,A是n×n时,则Am×nx=0只有零解 <=> |A|≠0 Am×nx=0有非零解 <=> r(A)<…
奇异值分解.特征值分解是一个提取矩阵特征很不错的方法,但是它只是对方阵而言的,在现实的世界中,我们看到的大部分矩阵都不是方阵,比如说有N个学生,每个学生有M科成绩,这样形成的一个N * M的矩阵就不可能是方阵,我们怎样才能描述这样普通的矩阵呢的重要特征呢?奇异值分解可以用来干这个事情,奇异值分解是一个能适用于任意的矩阵的一种分解的方法:     假设A是一个N * M的矩阵,那么得到的U是一个N * N的方阵(里面的向量是正交的,U里面的向量称为左奇异向量),Σ是一个N * M的矩阵(除了对角线…
参考 http://www.bfcat.com/index.php/2012/03/svd-tutorial/…
SVD分解 SVD分解是LSA的数学基础,本文是我的LSA学习笔记的一部分,之所以单独拿出来,是由于SVD能够说是LSA的基础,要理解LSA必须了解SVD,因此将LSA笔记的SVD一节单独作为一篇文章.本节讨论SVD分解相关数学问题,一个分为3个部分,第一部分讨论线性代数中的一些基础知识,第二部分讨论SVD矩阵分解,第三部分讨论低阶近似.本节讨论的矩阵都是实数矩阵. 基础知识 1. 矩阵的秩:矩阵的秩是矩阵中线性无关的行或列的个数 2. 对角矩阵:对角矩阵是除对角线外全部元素都为零的方阵 3.…
摘自 推荐系统 https://www.cnblogs.com/lzllovesyl/p/5243370.html 一.SVD奇异值分解 1.SVD简介 SVD(singular value decomposition).其作用就是将一个复杂的矩阵分解成3个小的矩阵. 用一张图片表示SVD的结构 2.SVD计算 (1)特征值和特征向量 如果A为方阵则 一般我们会把W的这nn个特征向量标准化,此时W的nn个特征向量为标准正交基 这样我们的特征分解表达式可以写成 (2)当A是一般矩阵的时候 这样V和…
一.介绍 特征值和奇异值在大部分人的印象中,往往是停留在纯粹的数学计算中.而且线性代数或者矩阵论里面,也很少讲任何跟特征值与奇异值有关的应用背景. 奇异值分解是一个有着很明显的物理意义的一种方法,它可以将一个比较复杂的矩阵用更小更简单的几个子矩阵的相乘来表示,这些小矩阵描述的是矩阵的重要的特性.就像是描述一个人一样,给别人描述说这个人长得浓眉大眼,方脸,络腮胡,而且带个黑框的眼镜,这样寥寥的几个特征,就让别人脑海里面就有一个较为清楚的认识,实际上,人脸上的特征是有着无数种的,之所以能这么描述,是…