被 bs 了姿势水平--好好学习数学QAQQAQQAQ ref #include <iostream> #include <cstring> #include <cstdio> using namespace std; typedef long long ll; int n, m, pri[10000005], cnt, mu[10000005], qia[10000005]; bool isp[10000005]; const int mod=20101009; vo…
[国家集训队]Crash的数字表格 / JZPTAB 题意 求\(\sum\limits_{i=1}^n\sum\limits_{j=1}^mlcm(i,j)\),\(n,m\le 10^7\) 鉴于我式子没推出来,所以再推一遍. \[\sum\limits_{i=1}^n\sum\limits_{j=1}^mlcm(i,j)\] \[=\sum\limits_{i=1}^n\sum\limits_{j=1}^m\frac{ij}{gcd(i,j)}\] \[=\sum\limits_{i=1}…
题面 传送门:洛咕 Solution 调到自闭,我好菜啊 为了方便讨论,以下式子\(m>=n\) 为了方便书写,以下式子中的除号均为向下取整 我们来颓柿子吧qwq 显然,题目让我们求: \(\large \sum_{i=1}^n\sum_{j=1}^m lcm(i,j)\) \(lcm\)没法玩,我们转到\(gcd\)形式: \(\large \sum_{i=1}^n\sum_{j=1}^m \frac{i*j}{gcd(i,j)}\) 根据套路,我们去枚举\(gcd\) \(\large \s…
题解-[国家集训队]Crash的数字表格 / JZPTAB 前置知识: 莫比乌斯反演 </> [国家集训队]Crash的数字表格 / JZPTAB 单组测试数据,给定 \(n,m\) ,求 \[\sum\limits_{i=1}^n\sum\limits_{j=1}^m\operatorname{lcm}(i,j)\bmod 20101009 \] 数据范围:\(1\le n,m\le 10^7\). 作为写出了最暴力的做法的蒟蒻,来推个式子. \(n\le m\),一气呵成: \[\begi…
P1829 [国家集训队]Crash的数字表格 原题传送门 前置芝士 莫比乌斯反演 乘法逆元 数论分块 正文 //补充:以下式子中的除法均为整除 由题目可以得知,这道题让我们所求的数,用一个式子来表达即为:\(\boxed{ANS=\sum_{i=1}^n \sum_{j=1}^m LCM(i,j)}\) 而根据莫比乌斯反演的内容,我们可以对右边的式子进行进一步的推导: \[\begin{align} \sum_{i=1}^n \sum_{j=1}^m LCM(i,j)&=\sum_{i=1}^…
传送门:洛谷,bzoj 题目描述 今天的数学课上,Crash小朋友学习了最小公倍数(Least Common Multiple).对于两个正整数a和b,LCM(a, b)表示能同时整除a和b的最小正整数.例如,LCM(6, 8) = 24. 回到家后,Crash还在想着课上学的东西,为了研究最小公倍数,他画了一张NM的表格.每个格子里写了一个数字,其中第i行第j列的那个格子里写着数为LCM(i, j).一个45的表格如下: 1 2 3 4 5 2 2 6 4 10 3 6 3 12 15 4 4…
题目描述 今天的数学课上,Crash小朋友学习了最小公倍数(Least Common Multiple).对于两个正整数a和b,LCM(a, b)表示能同时整除a和b的最小正整数.例如,LCM(6, 8) = 24. 回到家后,Crash还在想着课上学的东西,为了研究最小公倍数,他画了一张NM的表格.每个格子里写了一个数字,其中第i行第j列的那个格子里写着数为LCM(i, j).一个45的表格如下: 1 2 3 4 5 2 2 6 4 10 3 6 3 12 15 4 4 12 4 20 看着这…
题目背景 提示:原 P1829 半数集问题 已经迁移至 P1028 数的计算 题目描述 今天的数学课上,Crash小朋友学习了最小公倍数(Least Common Multiple).对于两个正整数a和b,LCM(a, b)表示能同时整除a和b的最小正整数.例如,LCM(6, 8) = 24. 回到家后,Crash还在想着课上学的东西,为了研究最小公倍数,他画了一张N*M的表格.每个格子里写了一个数字,其中第i行第j列的那个格子里写着数为LCM(i, j).一个4*5的表格如下: 1 2 3 4…
求解\(\sum_{i = 1}^{n}\sum_{j = 1}^{m}lcm\left ( i,j \right )\). 有\(lcm\left ( i,j \right )=\frac{ij}{gcd\left ( i,j \right )}\), 所以原本的式子转化为:\(\sum_{i = 1}^{n}\sum_{j = 1}^{m}\frac{ij}{gcd\left ( i,j \right )}\). 注意到\(i, j\) 均为 \(gcd\left ( i,j \right…
Description: 求$ \sum_{i=1}^n \sum_{j=1}^m lcm(i,j) $ Hint: $ n,m<=10^7 $ Solution: 这题有每次询问 \(O(n)\) 做法,然而原题是多组询问,所以还是好好推 \(O(\sqrt[]{n})\) 做法 首先: \(Ans=\sum_{d=1}^{n}d * \sum_{i=1}^n \sum_{j=1}^m i * j * [gcd(i,j)==1] ​\) $Ans=\sum_{d=1}^{n}d * \sum_…