MCMC算法深入理解】的更多相关文章

MCMC(Markov Chain Monte Carlo),即马尔科夫链蒙特卡洛方法,是以马尔科夫平稳状态作为理论基础,蒙特卡洛方法作为手段的概率序列生成技术. MCMC理论基础 如果转移矩阵为P的马尔科夫链平稳状态和我们研究的概率质量函数(概率密度函数)分布一致,那么我么从任意初始值开始,经过一定次数的概率转以后,后续的转移值组成的序列必然服从马尔科夫平稳状态分布,也就是服从我们研究的概率分布,这样就生成了我们研究的概率分布的模拟数据序列. 对于任意初始值X0,经过n次概率转移后,生成值符合…
MCMC算法的核心思想是我们已知一个概率密度函数,需要从这个概率分布中采样,来分析这个分布的一些统计特性,然而这个这个函数非常之复杂,怎么去采样?这时,就可以借助MCMC的思想. 它与变分自编码不同在于:VAE是已知一些样本点,这些样本肯定是来自于同一分布,但是我们不知道这个分布函数的具体表达式,然而我们需要从这个分布中去采取新的样本,怎么采样,这时,就需要借助VAE的思想. 个人的一点总结,不知道是否正确,如果有不同的理解,希望指正批评! MCMC原理讲解 以下内容博客转自:https://w…
1.IRT模型概述 IRT(item response theory 项目反映理论)模型.IRT模型用来描述被试者能力和项目特性之间的关系.在现实生活中,由于被试者的能力不能通过可观测的数据进行描述,所以IRT模型用一个潜变量 $ \theta $ 来表示,并考虑与项目相关的一组参数来分析正确回答测试项目的概率.目前常见的IRT模型有2-PL模型和3-PL模型.其具体表达式如下: 2-PL模型的表达式如下: $ p_{i,j}(\theta_i) = \frac {1} {1 + \exp\,[…
直方图均衡化就是调整灰度直方图的分布,即将原图中的灰度值映射为一个新的值.映射的结果直观表现是灰度图的分布变得均匀,从0到255都有分布,不像原图那样集中.图像上的表现就是对比度变大,亮的更亮,暗的更暗. 映射算法是计算灰度图的累积函数,并将其归一化.最后由累计函数映射出新的灰度值.这个算法其他的博客都有描述.我这里谈谈我对这个算法的理解. 通过这种算法会有什么效果?首先灰度的大小关系是不会变化的,但是新的灰度范围和这种灰度的像素数目相关.原本占据低区域和高区域的像素,虽然很少,但是占据了(0~…
1.MCMC概述 从名字我们可以看出,MCMC由两个MC组成,即蒙特卡罗方法(Monte Carlo Simulation,简称MC)和马尔科夫链(Markov Chain ,也简称MC).之前已经介绍过蒙特卡洛方法,接下来介绍马尔科夫链,以及结合两者的采样算法. 2.马尔科夫链 马尔科夫链的概念在很多地方都被提及过,它的核心思想是某一时刻状态转移的概率只依赖于它的前一个状态. 我们用数学定义来描述,则假设我们的序列状态是...Xt−2, Xt−1, Xt, Xt+1,...,那么我们的在时刻X…
数据结构实验之串一:KMP简单应用 Time Limit: 1000 ms Memory Limit: 65536 KiB Submit Statistic Discuss Problem Description 给定两个字符串string1和string2,判断string2是否为string1的子串. Input 输入包含多组数据,每组测试数据包含两行,第一行代表string1(长度小于1000000),第二行代表string2(长度小于1000000),string1和string2中保证…
SPF Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 7406   Accepted: 3363 Description Consider the two networks shown below. Assuming that data moves around these networks only between directly connected nodes on a peer-to-peer basis, a…
以前对PCA算法有过一段时间的研究,但没整理成文章,最近项目又打算用到PCA算法,故趁热打铁整理下PCA算法的知识.本文观点旨在抛砖引玉,不是权威,更不能尽信,只是本人的一点体会. 主成分分析(PCA)是多元统计分析中用来分析数据的一种方法,它是用一种较少数量的特征对样本进行描述以达到降低特征空间维数的方法,它的本质实际上是K-L变换.PCA方法最著名的应用应该是在人脸识别中特征提取及数据维,我们知道输入200*200大小的人脸图像,单单提取它的灰度值作为原始特征,则这个原始特征将达到40000…
Vue中diff算法的理解 diff算法用来计算出Virtual DOM中改变的部分,然后针对该部分进行DOM操作,而不用重新渲染整个页面,渲染整个DOM结构的过程中开销是很大的,需要浏览器对DOM结构进行重绘与回流,而diff算法能够使得操作过程中只更新修改的那部分DOM结构而不更新整个DOM,这样能够最小化操作DOM结构,能够最大程度上减少浏览器重绘与回流的规模. 虚拟DOM diff算法的基础是Virtual DOM,Virtual DOM是一棵以JavaScript对象作为基础的树,每一…
参考:KMP入门级别算法详解--终于解决了(next数组详解) https://blog.csdn.net/lee18254290736/article/details/77278769 在这里讨论的next数组的含义为模式串p[j]之前前缀和后缀相等的个数,若都不相等则为0.(特殊情况,没有前缀和后缀时,则为-1,如next[0]=-1:当j==1时,p[1]前面只有一个字符,在这里认为next[1]=0) 以下是计算next数组算法的代码: void getNext(char *p, int…